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A. Discussion739

Limitations. We have shown image conditions benefit our distillation learning. However, the distillation learning depends740
on the adapter architecture that takes conditions, and it is difficult to reduce the inference latency introduced by the adapter741
network in our current framework. As a future work, we would like to explore lightweight network architectures [14] in our742
distillation technique to further reduce the inference latency.743
Ethics statement. The diffusion distillation technique introduce in this work holds the promise of significantly enhancing744
the practicality of diffusion models in everyday applications such as consumer photography and artistic creation. While we745
are excited about the possibilities this model offers, we are also acutely aware of the possible risks and challenges associated746
with its deployment. Our model’s ability to generate realistic scenes could be misused for generating deceptive content. We747
encourage the research community and practitioners to prioritize privacy-preserving practices when using our method.748

B. Proofs749

B.1. Notations750

We use v̂θ(·, ·) to denote a pre-trained diffusion model that learns the unconditional data distribution x ∼ pdata with param-751
eters θ. The signal prediction and the noise prediction transformed by equation 8 are denoted by x̂θ(·, ·) and ε̂θ(·, ·), and they752
share the same parameters θ with v̂θ(·, ·).753

B.2. Self-consistency in Noise Prediction754

Remark. If a diffusion model, parameterized by v̂θ(zt, t), satisfies the self-consistency property on the noise prediction755
ε̂θ(zt, t) = αtv̂θ(zt, t) + σtzt, then it also satisfies the self-consistency property on the signal prediction x̂θ(zt, t) = αtzt −756
σtv̂θ(zt, t).757

Proof. The diffusion model that satisfies the self-consistency in the noise prediction implies:758

ε̂θ(zt′ , t
′) = ε̂θ(zt, t),

αt′ v̂θ(zt′ , t
′) + σt′zt′ = αtv̂θ(zt, t) + σtzt,

v̂θ(zt′ , t
′) =

αtv̂θ(zt, t) + σtzt − σt′zt′
αt′

,

(16)759

Based on the above equivalence, the transformation between the signal prediction xθ(zt′ , t
′) and xθ(zt, t) by using the760

update ruler in equation 7 and the reparameterization trick is:761

xθ(zt′ , t
′) = αt′zt′ − σt′ v̂θ(zt′ , t′)762

= αt′zt′ − σt′
αtv̂θ(zt, t) + σtzt − σt′zt′

αt′
// integrating equation 16763

=
α2
t′zt′ − σt′αtv̂θ(zt, t)− σt′σtzt + σ2

t′zt′

αt′
764

=
(1− σ2

t′)zt′ − σt′αtv̂θ(zt, t)− σt′σtzt + σ2
t′zt′

αt′
765

=
zt′ − σt′(αtv̂θ(zt, t) + σtzt)

αt′
766

=
zt′ − σt′(ε̂θ(zt, t))

αt′
// transformed with equation 8767

=
αt′xθ(zt, t) + σt′ ε̂θ(zt, t)− σt′(ε̂θ(zt, t))

αt′
// update ruler equation 9 of DDIM768

= xθ(zt, t).769

The derived equivalence shows that enforcing the self-consistency in the noise prediction, which is implemented by learning770
to minimize our distillation loss in equation 15, enforces the self-consistency in the signal prediction and can distill the771
pre-trained diffusion model.772
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C. Difference between Consisntecy Models 773

Algorithm 1 Conditional Diffusion Distillation (CDD)

Input: conditional data (x, c) ∼ pdata, adapted diffusion model ŵθ(zt, c, t), learning rate η, distance functions dε(·, ·)
and dx(·, ·), and EMA γ
θ− ← θ // target network initlization
repeat

Sample (x, c) ∼ pdata and t ∼ [∆t, T ] // empirically ∆t = 1
Sample ε ∼ N (0, I)
s← t−∆t
Sample zt ← αtx + σtε
- x̂t ← αtzt − σtΦ(zt, c, t)
- ε̂t ← αtΦ(zt, c, t) + σtzt
+ x̂t ← αtzt − σtŵθ(zt, c, t) // signal prediction in equation 8
+ ε̂t ← αtŵθ(zt, c, t) + σtzt // noise prediction in equation 8
ẑs ← αsx̂t + σsε̂t // update rule in equation 9
- x̂′t ← αtwθ(zt, c, t) + σtzt
- x̂′s ← αtwθ−(ẑs, c, s) + σsẑs
+ ε̂s ← αswθ−(ẑs, c, t) + σsẑs // noise prediction in equation 8
- L(θ, θ−)← dx(x̂′t, x̂

′
s)

+ L(θ, θ−)← dε(ε̂t, ε̂s) + dx(x, x̂t)
θ ← θ − η∇θL(θ,θ−)
θ− ← stopgrad(γθ− + (1− γ)θ) // exponential moving average

until convergence

D. Implementation Details 774

Skip Connections. We implement the skip connections as follows, which is same as the consistency models [44] and 775
EDMs [10] for satisfying the boundary condition but fφ could be either the signal prediction or noise prediction: 776

f ′φ(zt, t) = cskip(t)x + cout(t)fφ(zt, t), (17) 777

where 778

cskip(t) =
σdata

t2 + σ2
data

, cout(t) =
σdatat√
t2 + σ2

data

. (18) 779

We use σdata = 0.5. 780

E. Sampling Process Visualization 781

In order to provide a comprehensive understanding about the sampling process of our distilled model, as well as the difference 782
between ours and the finetuned conditional diffusion model, here we visualize their predicted clean image x̂0 at each sampling 783
steps in equation 8. 784

As the results shown in Figure 8, we can find that our method constantly adds more details into the predicted x̂0 when sam- 785
ples more steps. In contrast, such a constanly refinement is less visible in the results of the finetuned undistilled model. The 786
different demonstrate that our method indeed can reduce the sampling time by learning to replicate the iterative refinement 787
effects. 788
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sampling steps 0← T with finetuned model

sampling steps T → 0 with our conditional distilled model

Figure 8. Sampling process visualization of the distilled model by using our conditional diffusion distillation and the finetuned conditional
diffusion model. The results belong to the same row come from the predicted x̂0 at different time of the same sampling process, while
different row denotes different sampling process that uses different the total number of the sampling time, which are increased from T = 0
into T = 10 and decreased from T = 10 into T = 0, respectively. 14
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F. Additional results 789

LR StableSR DiffIR LDMs (4 steps) GD-II (4 steps) CM-II (4 steps) CoDi (Ours) HR

Figure 9. Visual comparisons of various diffusion-based methods on the simulated real-world super-resolution benchmark. The input of
all methods is a ‘Bicubic’-upsampled image.
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Input IP2P (200 steps) Ours (1 step) Ours (4 step)

make it sunny

make it sunset

Figure 10. Visual comparisons with the IP2P model and our conditional distilled model.
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Input IP2P (200 steps) Ours (1 step) Ours (4 step)

make it long exposure

make it lowkey

Figure 11. Visual comparisons with the IP2P model and our conditional distilled model.
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Figure 12. Visual comparisons of depth to image generation with the native ControlNet (central row of each item) and our conditional
distilled model (bottom row of each item) in 4 sampling steps.
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Figure 13. Visual comparisons of depth to image generation with the native ControlNet (central row of each item) and our conditional
distilled model (bottom row of each item) in 4 sampling steps.
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