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In this supplementary material, we provide implementa-
tion details in Sec. A and further experimental analyses in
Sec. B.

A. Implementation Details
A.1. VLM representation extraction

For classification tasks on both the ModelNet40 [8] and Ob-
jectScanNN [9] datasets, we adhere to the method used in
PointCLIPv2 [12], sampling 1,024 points from each point
cloud. These points are then projected into depth images
from 10 different views for the extraction of VLM rep-
resentations. As in PointCLIPv2 [12], we use the ViT-
B/16 [10] model as the visual encoder within the CLIP
framework, which comprises 12 layers of multi-head self-
attention (MHSA). We extract the VLM representations
corresponding to image patches during the attention pro-
cess at the final MHSA layer. These VLM representations
are then subjected to bilinear interpolation, a technique we
utilize to upscale the VLM representations to the original
size of the image, specifically to 224 × 224. Given that a
single view projection captures only a partial point cloud,
we utilize multi-view back projection to ensure thorough
predictions for all points in the cloud. For points observable
from multiple views, we perform linear interpolation of the
VLM representations, fine-tuning this process based on the
varying weights of the different views. These VLM repre-
sentations are then fed into our GeoZe to obtain enhanced
point-level representations. Subsequently, max-pooling is
applied to generate the global features. Additionally, we
extract global features using the ViT-B/16 model from each
view, consistent with PointCLIPv2.

For the part segmentation task on the ShapeNetPart [11]
dataset, we sample 2,048 points per point cloud. These
points are then projected onto depth images from 10 differ-
ent viewpoints for VLM representation extraction using the
ViT-B/16 model. After extraction, these VLM representa-
tions undergo bilinear interpolation for upsampling to their
original image size. Similar to the classification process,
we apply multi-view back projection to the point cloud us-

Table 1. Hyper-parameters configurations for different datasets.

Dataset Network Γ N̄ K1 K2

ModelNet40 PointCLIPv2[12] 16 256 32 24
ObjectScanNN PointCLIPv2[12] 16 256 32 24
ShapeNetPart PointCLIPv2[12] 16 256 32 24

ScanNet
OpenSeg [3] 8 3000 48 32

LSeg [5] 8 3000 48 32
ConceptFusion[4] 8 3000 48 32

nuScenes LSeg [5] 8 2400 48 32

ing the VLM representations. These VLM representations
are subsequently processed through our GeoZe to achieve
enhanced point-level representations.

In assessing the semantic segmentation performance on
the ScanNet [2] and nuScenes [1] datasets, we utilize the
VLM representations that are provided by OpenScene [6].
To ensure consistency and facilitate a fair comparison, we
adhere to the standard voxel size of 0.02m as in Open-
Scene. These VLM representations are then processed us-
ing GeoZe, which facilitates the enhancement of point-level
representations.

A.2. Parameters

Tab. 1 presents the dataset-specific hyperparameters includ-
ing the number of iterations (Γ), the number of superpoints
(N̄ ), the number of points (K1) used for computing simi-
larity, and the number of neighboring points (K2) for local
aggregation. Specifically, increasing the number of super-
points from N

8 to a maximum of N̄ ≤ N
4 can slightly im-

prove results, as denoted by N
8 ≤ N̄ ≤ N

4 . N is the number
points of a point cloud. Our experiments suggest that opti-
mal accuracy is achieved when the number of superpoints
is maintained between one-eighth and one-third of the orig-
inal point cloud size. Balancing both accuracy and time
complexity, the parameters we adopted in our experiments
are as listed in Tab. 1.
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A.3. Geometric representation (FPFH) extraction

In our experiments, we compute FPFH [7] features for all
points. To improve the computation time, we first down-
sample M reference points. Then, we sample K3 neigh-
boring points for each point from the M reference points
within a radius r1 for estimating the normals and K4 neigh-
boring points for each point from M reference points within
a radius r2 for estimating FHFH. The details are reported in
Tab. 2.

Table 2. Hyper-parameters configurations for FPFH computation
on different datasets.

Dataset M̄ K3 K4 r1 r2

ModelNet40 512 32 100 0.04 0.08
ObjectScanNN 512 32 100 0.04 0.08
ShapeNetPart 512 32 100 0.04 0.08

ScanNet 4800 32 100 0.05 0.10

nuScenes 5200 32 100 0.05 0.10

B. Additional Experimental Analyses
B.1. VLM representation anchors

VLM representation anchor is designed to find important
VLM representations that are more suitable for semantic
alignment. In our effort to cover a broad spectrum of cat-
egories and improve the anchors’ general applicability, we
conducte experiments using VLM representations derived
from 32 point clouds. This idea is inspired by the concept
of a memory bank for constrastive learning. We also pro-
duce geometric representation anchors, employing the same
weight parameters as those used for calculating the VLM
representation anchors. The purpose of these geometric rep-
resentation anchors is to aid the anchor projection process,
thereby mitigating issues of semantic misalignment. This is
achieved by searching for the closest VLM representation
anchor for each point, taking into account both the similar-
ities of VLM representations with VLM representation an-
chors and geometric representations with geometric repre-
sentation anchors. Fig. 1 displays the results of zero-shot se-
mantic segmentation on ScanNet [2], using the OpenSeg as
the feature extractor. This figure clearly shows the improved
performance in zero-shot semantic segmentation achieved
by incorporating VLM representation anchors (presented in
the bottom row), especially when compared to the method
that does not utilize VLM representation anchors, as seen in
the third row of the figure.

B.2. Classification visualization

In Fig. 2, we report a t-SNE comparison between the class
representations extracted with PointCLIPv2 and GeoZe
on ScanObjectNN [9] (S-PB-T50-RS). We quantify t-SNE
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Figure 1. Zero-shot semantic segmentation results on ScanNet
using OpenSeg feature extraction. (top row) ground-truth an-
notations, (second row) OpenScene (OpenSeg) [6], (third row)
GeoZe/wo (OpenSeg) without using VLM representation anchors,
and (bottom row) GeoZe (OpenSeg). ‘wo’ indicates the absence
of VLM representation anchors.

clusters with three clustering metrics: Silhouette Coef-
ficient, Inter-cluster Distance, and Intra-cluster Distance.
From these metrics, we can confirm the efficacy of GeoZe
in better separating point features of diverse categories com-
pared to PointCLIPv2.

Fig. 3 compares the same global features using tradi-
tional clustering metrics for a more detailed assessment of
the differences between GeoZe and PointCLIPv2. For a
comprehensive analysis of intra- and inter-cluster statistics,
we consider six extrinsic clustering measures, that explic-
itly compare classification predictions with ground-truth an-
notations. The Adjusted Rand Index (ARI) evaluates the
similarity of cluster assignments through pairwise compar-
isons. The Adjusted Mutual Information (AMI) assesses the
agreement of cluster assignments. Homogeneity (H) gauges
the proportion of instances from a single class in a cluster,
akin to Precision. Completeness (C) measures the propor-
tion of a given class’s instances assigned to the same clus-
ter, similar to Recall. The V-measure (V) quantifies clus-
tering correctness using conditional entropy analysis. The
Fowlkes-Mallows score (FM) evaluates clustering accuracy
through the geometric mean of pairwise Precision and Re-
call. Higher scores in all these metrics indicate better per-
formance. In Fig. 3, the histogram values are normalized,
with the maximum value for each score set to 1. GeoZe
outperforms PointCLIPv2 in all metrics.
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Figure 2. T-SNE embeddings of (a) PointCLIPv2 [12] and (b) GeoZe on ScanObjectNN [9] (S-PB-T50-RS). GeoZe produces better
separated and grouped clusters for different categories, as evidenced by the superior silhouette coefficient (SC) and greater inter-cluster
distance (inter), alongside a smaller intra-cluster distance (intra).
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Figure 3. Comparison of clustering metrics (the higher the better)
on ModelNet40 [8]. Metrics key: ARI: adjusted rand index, AMI:
adjusted mutual information, H: homogeneity score, C: complete-
ness score, V: V-measure, FM: Fowlkes-Mallows score.

B.3. Segmentation results on nuScenes

Fig. 4 showcases a range of qualitative results obtained
using our method, GeoZe, on the nuScenes outdoor
dataset [1]. The effectiveness of GeoZe is underscored by
its ability to produce more semantically coherent segmented
regions, a property primarily attributed to our novel clus-
tering technique. Additionally, the synergy of local and
global aggregation techniques bolsters the VLM representa-
tion, making it more geometrically aware. Another reason
is the integration of geometric representation assignment,
which plays a pivotal role in reducing semantic misalign-
ment during anchor projection. The positive effects of our
method are particularly visible at the boundaries of point
clouds, where GeoZe substantially lowers noise levels, out-
performing the compared method OpenScene. This noise
reduction is especially effective owing to the distinct geo-
metric structures commonly found at these boundary zones.

B.4. VLM representation guided clustering

In this section, we demonstrate the enhancement in seman-
tic clustering performance achieved by integrating geomet-
ric information into VLM representation. We use the clus-
tering scores to compute each cluster’s prototypical repre-
sentation. Specifically, these prototypes are weighted av-
erages of VLM representations, based on the clustering
scores. Subsequently, each point is assigned to the proto-
type of its corresponding cluster. PCA projection is then
applied to visualize the clustering results. Fig. 5 showcases
some qualitative clustering results on ShapeNetPart [11] us-
ing different point-level coordinates (Coord.) and represen-
tations. The top row demonstrates results using only coor-
dinates for clustering, while the second row combines the
coordinates with VLM representations. The third row in-
tegrates coordinates and geometric representations (FPFH),
offering more meaningful partitioning compared to using
just coordinates or coordinates with VLM representations.
The bottom row features GeoZe, which considers both co-
ordinates and geometric representations (FPFH) for cluster-
ing, guided by VLM representation similarity, achieving the
best clustering results (same parts tend to share colors).
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Figure 4. Zero-shot semantic segmentation results on nuScenes [1] using OpenSeg as feature extractor. (left column) ground-truth annota-
tions, (middle column) OpenScene (OpenSeg) [6], and (right column) GeoZe.
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Figure 5. Visualization of clustering results on ShapeNetPart [11] using various sources: (top row) coordinates only; (second row) coor-
dinates with VLM representations; (third row) coordinates and geometric representations (FPFH); (fourth row) coordinates and geometric
representations (FPFH), guided by VLM representation similarity. Coord. represents Coordinates.
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