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Figure 1. Illustration of the light distribution in our light stage. The
image is presented in the panoramic format, where the horizontal
axis represents longitude, and the vertical axis represents latitude.

Figure 2. Examples of captured four views using our light stage.

Input Single-view w/o ST Holo-Relighting
Figure 3. Visual comparison for ablation study. Either single-
view inversion or removing shading transfer (ST) results in blurry
lighting effects and harms image quality.

1. Video Demonstration

We encourage readers to view the provided supplemental
video for a better demonstration of the controllability and
relighting quality of Holo-Relighting.

†The second authors
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Figure 4. Illustration of multi-view regularization. Single-view
inversion fails to reconstruct the actual geometry due to the depth
ambiguity (see side view depth). Using multi-view inversion re-
lieves this issue and provides a more accurate geometry.
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Figure 5. Additional free-view relighting comparison with the
state-of-the-art parametric face-based method PN-Relighting [12].
Due to the limited expressiveness of their parametric face model,
[12] fails to synthesize realistic lighting effects, hairs and mouth
interiors, and creates “holes” in the regions that are invisible from
the input images.

2. Implementation Details

Network Architecture. Both the albedo net and the nor-
mal net have a simple U-shaped [10] structure with three
down-sampling layers and three up-sampling layers. Both

https://yiqunmei.net/holo-web/
https://yiqunmei.net/holo-web/
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Figure 6. Visual comparison on free-view relighting. We compare our method with NeRFFaceLighting [6] and FaceLit [9].

networks have 64-128-256-512-256-128-64 hidden chan-
nels. For the relighting net, each resolution stage (i.e. the re-
lighting block) contains one convolution layer, one residual
block and one transposed convolution layer for upsampling.

The output channel number matches the channel number of
corresponding style block in the triplane generator.
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Figure 7. Visual comparison on 2D portrait relighting. We compare our method with SIPRW [13] and Total Relighting [8] (TR).

Figure 8. Illustration of lighting control using dynamic illumination. Our method can produce consistent lighting effects with a rotating
lighting environment.
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Figure 9. Ablation study on coarse-to-fine relighting. Without the
coarse-to-fine design, the model fails to capture either local effects
(e.g. highlights) or the global shading distribution ((a) & (b)).

Inference and Training Details. We separately train the
delighting stage and relighting stage. During both inference
and training, we use the off-the-self estimators [4] and [5]
to obtain camera parameters and head pose respectively.
Training our method takes about 3 days on 8 NVIDIA A100
GPUs.

Light Stage Setup and Rendering Details. We train
Holo-Relighting using data rendered by the light stage cap-
tures. Specifically, we use a light stage similar to [7].
The rig has a diameter of 3.6 meters, and is equipped with
160 programmable LED lights and four frontal-view cam-
eras. Figure 1 shows the distribution of lights. We use the
MER2-502-79U3M high-speed camera to capture subjects’
reflectance field at 5 megapixel resolution with an expo-
sure time of 20ms. We crop head regions from the cap-
tured OLAT sequences and resize them to the resolution of
512 × 512 for data rendering. Examples of the captured
views (after cropping and resizing) are shown in Figure 2.
We approximate the albedo using a lighting normalized im-
age captured under a flat illumination following [7, 8]. Sim-
ilar to TR [8], we pair an environment map with an OLAT
sequence to get a relit image via image-based relighting [3].
Then, we apply shading transfer to obtain a pseudo ground
truth for supervising the relighting net.

Shading Transfer Details. We create pseudo ground-
truth images using shading transfer to train the relighting
net. The pseudo ground-truth images are used in all terms
of Lrelit. Relighting with real ground-truth images leads
to blurry results, because the input to the relighting stage
is not the ground-truth albedo, instead it is the ground-truth
albedo’s inversion, whose details are not perfectly aligned
with real ground truth images. To alleviate this, we create
a pseudo ground-truth image by transferring the shading ef-
fect to the inverted albedo, allowing pixel-wise alignment
with the input in training. When transfering the shading,
we add a small ϵ = 1e − 4 to the denominator to ensure
numerical stability.

3. Visual Results for Ablation Study
We report visual results for ablation study in Figure 3. Ei-
ther using single-view inversion or removing shading trans-
fer (ST) harms relighting quality and leads to blurry results.

We provide an additional illustration of the multi-view regu-
larization using depth maps in Figure 4. While both single-
view inversion and multi-view inversion can reconstruct the
input view well, the geometry from the single-view inver-
sion fails to reflect the true geometry of the subject due to
the depth ambiguity. This is illustrated by the rendered side
view from the inverted latent code. Inaccurate geometry
impedes the network from learning to perform relighting by
using geometry clues, and results in blurry lighting effects
as shown in Figure 3. Multi-view regularization effectively
alleviates this problem.

Here we also investigate the coarse-to-fine design of the
relighting net. We compare it with “coarse-only” and “fine-
only” feature injection and the results are shown in Figure 9.
Without the coarse-to-fine design, the model fails to capture
either local effects (e.g. highlights) or the global shading
distribution. Thus coarse-to-fine design is crucial to handle
both global & local effects well (Figure 9 (c)).

4. More Visual Results
We conduct additional visual comparison with the state-of-
the-art parametric-face-based method PN-Relighting [12]
on free-view relighting. As their code for free-view relight-
ing is not released, we acquire results from their authors.
As shown in Figure 5, due to the limited expressiveness of
the parametric face model, their method fails to synthesize
realistic lighting effects, hairs and mouth interiors and also
produces black “holes” in the areas that are not visible from
the input views.

In Figure 6, we report more visual comparsion with
NeRFFaceLighting [6] and FaceLit [9] on free-view relight-
ing.

In Figure 7, we provide extra qualitative comparsion on
2D portrait relighting. Here we also compare our method
with SIPRW [13]. Results for SIPRW [13] and TR [8] are
acquired from their authors, as their code is not available.

5. Lighting Control: Dynamic Illumination
We have shown our method can robustly control lighting in
Figure 6 & 7. Here we further demonstrate Holo-Relighting
also handles dynamic illumination, i.e. a rotating lighting
environment around the subject. As shown in Figure 8, our
method stably produces realistic shading and specular high-
lights across frames. Holo-Relighting also renders plausible
rim lighting around the contour of the face, as shown in the
last column of Figure 8.

6. Limitations
Holo-Relighting leverages the pretrained EG3D [2] and
GAN inversion [14] to extract 3D information from a 2D
input image. It is thus challenging to apply our current
implementation to upper-body portrait relighting, which is



beyond the capability of EG3D. Extending our method to
more specialized human generative models [15, 19] could
be an interesting direction for future work. Moreover, GAN
inversion [14] might hallucinate inaccurate details such as
the freckles shown in Figure 3 in the main paper. We use
shading transfer to alleviate this issue when preparing for
the training data. However, this problem still remains at in-
ference time. Our method also suffers from the common
limitations of GAN inversion-based image editing, where
the imperfect inversion might lead to identity shift and los-
ing some details. The inversion might also induce some
inconsistency upon tiny geometry details (e.g. hairs) that
causes flickers when rendering to videos. Developing more
advanced inversion techniques [1, 17, 18] could be a poten-
tial solution to explore for future work.

For relighting, we demonstrate that our method is gen-
erally robust to diverse lighting conditions and control sig-
nals. However, similar to previous approaches [7, 8, 11],
Holo-Relighting can only generate lighting effects that are
represented in the training data. More complicated lighting
effects such as foreign shadow do not exist in the light stage
training data and thus cannot be produced. Further, as our
method learns to approximate the light transport from data
rather than adhering to physical constraints, we found some
challenging cases (e.g. view-dependent effects) may not be
perfectly handled. In addition, as shown in Figure 7 (third
row, fourth column), our method fails to render eyeglasses
glares as such effect only accounts for a minor portion of
the overall loss function. A possible solution is to add an
explicit supervision on eyeglasses in a way similar to [16].
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