TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis

Supplementary Material

Figure 4. (Best viewed in color.) Top: Tetra-basis projection is the output of a steerable 3D spherical neuron [28] Without loss of generality, consider one $(K=1)$ steerable spherical neuron $B(\boldsymbol{S})$ (see Section 3.3) with $\boldsymbol{R}_{O}=\mathbf{I}_{5}$, and the input point \mathbf{x} that happens to lie outside of the sphere (\mathbf{c}, r) with the learnable parameter vector \boldsymbol{S} (assume $\gamma=1$, and thus $\tilde{\boldsymbol{S}}=\boldsymbol{S}$; see Section 3.2) and its three rotated copies. Then the projection of \mathbf{x} in the tetra-basis $B(\boldsymbol{S})$ is the vector $B(\boldsymbol{S}) \boldsymbol{X}$ consisting of four scalar activations $\boldsymbol{X}^{\top} \boldsymbol{R}_{T_{i}} \boldsymbol{S}$ of the respective spherical decision surfaces. Each activation determines the respective cathetus length, as per [27]. Bottom: Vector neurons [10] preserve the spatial dimension (4 in our case) and alter the latent dimension C of the feature \boldsymbol{Y}, see (10).

7. Additional illustrations

In order to help the reader to understand the main concepts of our approach, i.e., prior work (steerable) spherical neurons [28] and vector neurons [10], as well as 4D tetra-basis projections (see Figure 1 and Section 4.1), we provide illustrations in Figure 4.

8. Learned Tetra-selection

In this section, we present the Tetra-selection discussed in Section 5.3. As we can see from Figures 5 and 6, TetraSphere learns all but one γ parameter of the spherical decision surface (see (5)), defining the steerable neuron (6), to be close to 0 , effectively always selecting one tetra-basis (out of K) during inference. We attribute the increased performance for $K>1$ (see Tables 1, 2, and 3), to the higher chance of selecting a better initialization of the steerable neuron parameters.

Figure 5. Learned γ parameters for TetraSphere ${ }_{K=8}$ trained on the $O B J_{-} B G$ subset of ScanObjectNN (see Table 1). All but γ_{7} converge close to 0 .

Figure 6. Learned γ parameters for TetraSphere ${ }_{K=16}$ trained on the PB_T50_RS (see Table 2) of ScanObjectNN. All but γ_{16} converge close to 0 .

9. Synthetic data results

We present a complete comparison of the methods trained on synthetic data to perform classification and part segmentation in Tables 5 and 6, respectively. Our TetraSphere achieves the best performance among equivariant methods in both tasks, consistently outperforming VN-DGCNN.

Only the two RI methods PaRINet [6] and Yu et al. [48] outperform tetrasphere in the former case and only PaRINet in the latter. Note that TetraSphere outperforms both PaRINet and Yu et al. on the other two real-data benchmarks (see Tables 1 and 2).

Methods	z / z	$z / \mathrm{SO}(3)$	$\mathrm{SO}(3) / \mathrm{SO}(3)$
Rotation-sensitive			
PointCNN [25]	92.5	41.2	84.5
DGCNN [41]	90.3	33.8	88.6
Rotation-invariant			
3D-GFE [8]	88.6	89.4	89.0
Li et al. [23]	90.2	90.2	90.2
Yu et al. [48]	91.0	$\underline{91.0}$	91.0
PaRINet [6]	$\underline{91.4}$	91.4	91.4
Rotation-equivariant			
TFN [31]	89.7	89.7	89.7
VN-DGCNN [10]	89.5	89.5	90.2
TetraSphere ${ }_{K=1}$	89.5	89.5	89.9
TetraSphere ${ }_{K=2}$	89.7	89.7	90.0
TetraSphere ${ }_{K=4}$	90.0	90.0	89.5
TetraSphere ${ }_{K=8}$	90.5	90.5	90.3
TetraSphere $_{K=16}$	89.8	89.8	90.0

Table 5. Classification acc. (\%) on the ModelNet40 shapes under different train/test settings of rotation augmentation. The overall best results are presented in bold, and the second best are underlined. Our TetraSphere sets a new state-of-the-art performance for equivariant baselines.

Methods	z / z	$z / \mathrm{SO}(3)$	$\mathrm{SO}(3) / \mathrm{SO}(3)$
Rotation-sensitive			
PointCNN [25]	84.6	34.7	71.4
DGCNN [41]	82.3	37.4	73.3
Rotation-invariant			
3D-GFE [8]	-	78.2	77.7
Li et al. [23]	81.7	81.7	81.7
PaRINet [6]	$\underline{83.8}$	83.8	83.8
Yu et al. [48]	-	80.3	80.4
Rotation-equivariant			
TFN [31]	-	78.1	78.2
VN-DGCNN [10]	81.4	81.4	81.4
TetraSphere ${ }_{K=1}$	82.1	82.1	82.3
TetraSphere ${ }_{K=2}$	82.3	82.3	82.5
TetraSphere ${ }_{K=4}$	82.2	82.2	82.2
TetraSphere ${ }_{K=8}$	82.3	82.3	82.4
TetraSphere ${ }_{K=16}$	82.3	82.3	82.3

Table 6. Part segmentation: ShapeNet mIoU (\%). The overall best results are presented in bold, and the second best are underlined. Our TetraSphere sets a new state-of-the-art performance for equivariant baselines.

