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Figure 4. (Best viewed in color.) Top: Tetra-basis projection is the
output of a steerable 3D spherical neuron [28] Without loss of gen-
erality, consider one (K = 1) steerable spherical neuron B(S) (see
Section 3.3) with Ro = I5, and the input point x that happens to
lie outside of the sphere (c, ) with the learnable parameter vector
S (assume v = 1, and thus S = S; see Section 3.2) and its three
rotated copies. Then the projection of x in the tetra-basis B(S) is
the vector B(S)X consisting of four scalar activations X ' Rz, S of
the respective spherical decision surfaces. Each activation deter-
mines the respective cathetus length, as per [27]. Bottom: Vector
neurons [10] preserve the spatial dimension (4 in our case) and
alter the latent dimension C' of the feature Y, see (10).

7. Additional illustrations

In order to help the reader to understand the main concepts
of our approach, i.e., prior work (steerable) spherical neu-
rons [28] and vector neurons [10], as well as 4D tetra-basis
projections (see Figure | and Section 4.1), we provide illus-
trations in Figure 4.

8. Learned Tetra-selection

In this section, we present the Tetra-selection discussed in
Section 5.3. As we can see from Figures 5 and 6, TetraS-
phere learns all but one ~ parameter of the spherical deci-
sion surface (see (5)), defining the steerable neuron (6), to be
close to 0, effectively always selecting one tetra-basis (out of
K) during inference. We attribute the increased performance
for K > 1 (see Tables 1, 2, and 3), to the higher chance
of selecting a better initialization of the steerable neuron
parameters.
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Figure 5. Learned y parameters for TetraSphere—s trained on
the OBJ_BG subset of ScanObjectNN (see Table 1). All but v+
converge close to 0.
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Figure 6. Learned v parameters for TetraSpherex—1¢ trained
on the PB_T50_RS (see Table 2) of ScanObjectNN. All but 16
converge close to 0.

9. Synthetic data results

We present a complete comparison of the methods trained on
synthetic data to perform classification and part segmentation
in Tables 5 and 6, respectively. Our TetraSphere achieves
the best performance among equivariant methods in both
tasks, consistently outperforming VN-DGCNN.

Only the two RI methods PaRINet [6] and Yu e al. [48]
outperform tetrasphere in the former case and only PaRINet
in the latter. Note that TetraSphere outperforms both
PaRINet and Yu e al. on the other two real-data benchmarks
(see Tables 1 and 2).



Methods z/z  z/SO(3) SO(3)/SO(3) Methods z/z  z/SO(3) SO(3)/SO(3)

Rotation-sensitive Rotation-sensitive
PointCNN [25] 92.5 41.2 84.5 PointCNN [25] 84.6 34.7 71.4
DGCNN [41] 90.3 338 88.6 DGCNN [41] 82.3 37.4 73.3
Rotation-invariant Rotation-invariant
3D-GFE [8] 88.6 89.4 89.0 3D-GFE [8] - 78.2 71.7
Lieral. [23] 90.2 90.2 90.2 Lieral [23] 81.7 81.7 81.7
Yu et al. [48] 91.0 91.0 91.0 PaRINet [6] 83.8 83.8 83.8
PaRINet [6] 914 914 91.4 Yu et al. [48] - 80.3 80.4
Rotation-equivariant Rotation-equivariant
TEN [31] 89.7 89.7 89.7 TEN [31] - 78.1 78.2
VN-DGCNN [10] 89.5 89.5 90.2 VN-DGCNN [10] 81.4 81.4 81.4
TetraSphere ;1 89.5 89.5 89.9 TetraSphere ;1 82.1 82.1 82.3
TetraSphere o 89.7 89.7 90.0 TetraSphere o 82.3 82.3 82.5
TetraSphere 4 90.0 90.0 89.5 TetraSphere 4 82.2 82.2 82.2
TetraSphere ;g 90.5 90.5 90.3 TetraSphere ;g 82.3 82.3 82.4
TetraSpherey —1¢ 89.8 89.8 90.0 TetraSphere —1¢ 82.3 82.3 82.3

Table 5. Classification acc. (%) on the ModelNet40 shapes under
different train/test settings of rotation augmentation. The over-
all best results are presented in bold, and the second best are
underlined. Our TetraSphere sets a new state-of-the-art perfor-
mance for equivariant baselines.

Table 6. Part segmentation: ShapeNet mloU (%). The overall best
results are presented in bold, and the second best are underlined.
Our TetraSphere sets a new state-of-the-art performance for equiv-
ariant baselines.
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