
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis

Supplementary Material

!!!c

!!"c

!!#c

c

"

	−%&
" ! !#'

		

	−%&"!!"'		

	−
%&

" !
! !
'		

(

(

(

(
)

−%& "'		

*		 ∈ ℝ#×%

*& 	 ∈ ℝ#$×%

	,	 ∈ ℝ#$×#

		!' = 		 (!/, 	() (‖/‖
* − (*), 1) 		∈ ℝ5

'			 =		 (/, 	 () (‖/‖
* − (*), 1) 				∈ ℝ5

&			 =		 (", −1, − (
) ‖"‖

*) 															∈ ℝ5

          B(')X =																															"												∈ ℝ4

Figure 4. (Best viewed in color.) Top: Tetra-basis projection is the
output of a steerable 3D spherical neuron [28] Without loss of gen-
erality, consider one (K = 1) steerable spherical neuron B(S) (see
Section 3.3) with RO = I5, and the input point x that happens to
lie outside of the sphere (c, r) with the learnable parameter vector
S (assume � = 1, and thus S̃ = S; see Section 3.2) and its three
rotated copies. Then the projection of x in the tetra-basis B(S) is
the vector B(S)X consisting of four scalar activations X>RTiS of
the respective spherical decision surfaces. Each activation deter-
mines the respective cathetus length, as per [27]. Bottom: Vector
neurons [10] preserve the spatial dimension (4 in our case) and
alter the latent dimension C of the feature Y, see (10).

7. Additional illustrations
In order to help the reader to understand the main concepts
of our approach, i.e., prior work (steerable) spherical neu-
rons [28] and vector neurons [10], as well as 4D tetra-basis
projections (see Figure 1 and Section 4.1), we provide illus-
trations in Figure 4.

8. Learned Tetra-selection
In this section, we present the Tetra-selection discussed in
Section 5.3. As we can see from Figures 5 and 6, TetraS-
phere learns all but one � parameter of the spherical deci-
sion surface (see (5)), defining the steerable neuron (6), to be
close to 0, effectively always selecting one tetra-basis (out of
K) during inference. We attribute the increased performance
for K > 1 (see Tables 1, 2, and 3), to the higher chance
of selecting a better initialization of the steerable neuron
parameters.

Figure 5. Learned � parameters for TetraSphereK=8 trained on
the OBJ_BG subset of ScanObjectNN (see Table 1). All but �7
converge close to 0.

Figure 6. Learned � parameters for TetraSphereK=16 trained
on the PB_T50_RS (see Table 2) of ScanObjectNN. All but �16
converge close to 0.

9. Synthetic data results

We present a complete comparison of the methods trained on
synthetic data to perform classification and part segmentation
in Tables 5 and 6, respectively. Our TetraSphere achieves
the best performance among equivariant methods in both
tasks, consistently outperforming VN-DGCNN.

Only the two RI methods PaRINet [6] and Yu et al. [48]
outperform tetrasphere in the former case and only PaRINet
in the latter. Note that TetraSphere outperforms both
PaRINet and Yu et al. on the other two real-data benchmarks
(see Tables 1 and 2).



Methods z/z z/ SO(3) SO(3)/ SO(3)

Rotation-sensitive

PointCNN [25] 92.5 41.2 84.5
DGCNN [41] 90.3 33.8 88.6

Rotation-invariant

3D-GFE [8] 88.6 89.4 89.0
Li et al. [23] 90.2 90.2 90.2
Yu et al. [48] 91.0 91.0 91.0
PaRINet [6] 91.4 91.4 91.4

Rotation-equivariant

TFN [31] 89.7 89.7 89.7
VN-DGCNN [10] 89.5 89.5 90.2
TetraSphereK=1 89.5 89.5 89.9
TetraSphereK=2 89.7 89.7 90.0
TetraSphereK=4 90.0 90.0 89.5
TetraSphereK=8 90.5 90.5 90.3
TetraSphereK=16 89.8 89.8 90.0

Table 5. Classification acc. (%) on the ModelNet40 shapes under
different train/test settings of rotation augmentation. The over-
all best results are presented in bold, and the second best are
underlined. Our TetraSphere sets a new state-of-the-art perfor-
mance for equivariant baselines.

Methods z/z z/ SO(3) SO(3)/ SO(3)

Rotation-sensitive

PointCNN [25] 84.6 34.7 71.4
DGCNN [41] 82.3 37.4 73.3

Rotation-invariant

3D-GFE [8] - 78.2 77.7
Li et al. [23] 81.7 81.7 81.7
PaRINet [6] 83.8 83.8 83.8
Yu et al. [48] - 80.3 80.4

Rotation-equivariant

TFN [31] - 78.1 78.2
VN-DGCNN [10] 81.4 81.4 81.4
TetraSphereK=1 82.1 82.1 82.3
TetraSphereK=2 82.3 82.3 82.5
TetraSphereK=4 82.2 82.2 82.2
TetraSphereK=8 82.3 82.3 82.4
TetraSphereK=16 82.3 82.3 82.3

Table 6. Part segmentation: ShapeNet mIoU (%). The overall best
results are presented in bold, and the second best are underlined.
Our TetraSphere sets a new state-of-the-art performance for equiv-
ariant baselines.
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