TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis

Figure 4. (Best viewed in color.) **Top**: Tetra-basis projection is the output of a steerable 3D spherical neuron [28] Without loss of generality, consider one (K = 1) steerable spherical neuron B(S) (see Section 3.3) with $\mathbf{R}_O = \mathbf{I}_5$, and the input point \mathbf{x} that happens to lie outside of the sphere (\mathbf{c}, r) with the learnable parameter vector S (assume $\gamma = 1$, and thus $\tilde{S} = S$; see Section 3.2) and its three rotated copies. Then the projection of \mathbf{x} in the tetra-basis B(S) is the vector B(S)X consisting of four scalar activations $X^{\top}\mathbf{R}_{T_i}S$ of the respective spherical decision surfaces. Each activation determines the respective cathetus length, as per [27]. Bottom: Vector neurons [10] preserve the spatial dimension (4 in our case) and alter the latent dimension C of the feature Y, see (10).

7. Additional illustrations

In order to help the reader to understand the main concepts of our approach, *i.e.*, prior work (steerable) spherical neurons [28] and vector neurons [10], as well as 4D tetra-basis projections (see Figure 1 and Section 4.1), we provide illustrations in Figure 4.

8. Learned Tetra-selection

In this section, we present the Tetra-selection discussed in Section 5.3. As we can see from Figures 5 and 6, **TetraS-phere** learns all but one γ parameter of the spherical decision surface (see (5)), defining the steerable neuron (6), to be close to 0, effectively always selecting one tetra-basis (out of K) during inference. We attribute the increased performance for K > 1 (see Tables 1, 2, and 3), to the higher chance of selecting a better initialization of the steerable neuron parameters.

Figure 5. Learned γ parameters for **TetraSphere**_{K=8} trained on the *OBJ_BG* subset of ScanObjectNN (see Table 1). All but γ_7 converge close to 0.

Figure 6. Learned γ parameters for **TetraSphere**_{K=16} trained on the *PB_T50_RS* (see Table 2) of ScanObjectNN. All but γ_{16} converge close to 0.

9. Synthetic data results

We present a complete comparison of the methods trained on synthetic data to perform classification and part segmentation in Tables 5 and 6, respectively. Our **TetraSphere** achieves the best performance among equivariant methods in both tasks, consistently outperforming VN-DGCNN.

Only the two RI methods PaRINet [6] and Yu *et al.* [48] outperform tetrasphere in the former case and only PaRINet in the latter. Note that TetraSphere outperforms both PaRINet and Yu *et al.* on the other two real-data benchmarks (see Tables 1 and 2).

Methods	z/z	$z/\operatorname{SO}(3)$	SO(3)/SO(3)	Methods
]	Rotation-sensi	tive		R
PointCNN [25]	92.5	41.2	84.5	PointCNN [25]
DGCNN [41]	90.3	33.8	88.6	DGCNN [41]
]	R			
3D-GFE [8]	88.6	89.4	89.0	3D-GFE [8]
Li et al. [23]	90.2	90.2	90.2	Li <i>et al</i> . [23]
Yu et al. [48]	91.0	<u>91.0</u>	<u>91.0</u>	PaRINet [6]
PaRINet [6]	<u>91.4</u>	91.4	91.4	Yu <i>et al</i> . [48]
R	Ro			
TFN [31]	89.7	89.7	89.7	TFN [31]
VN-DGCNN [10]	89.5	89.5	90.2	VN-DGCNN [10]
$TetraSphere_{K=1}$	89.5	89.5	89.9	TetraSphere $_{K=1}$
$TetraSphere_{K=2}$	89.7	89.7	90.0	TetraSphere $_{K=2}$
$TetraSphere_{K=4}$	90.0	90.0	89.5	TetraSphere $_{K=4}$
$TetraSphere_{K=8}$	90.5	90.5	90.3	TetraSphere $_{K=8}$
$TetraSphere_{K=16}$	89.8	89.8	90.0	TetraSphere $_{K=16}$

Methods	z/z	$z/\operatorname{SO}(3)$	SO(3)/SO(3)			
Rotation-sensitive						
PointCNN [25]	84.6	34.7	71.4			
DGCNN [41]	82.3	37.4	73.3			
Rotation-invariant						
3D-GFE [8]	-	78.2	77.7			
Li et al. [23]	81.7	81.7	81.7			
PaRINet [6]	83.8	83.8	83.8			
Yu et al. [48]	-	80.3	80.4			
Rotation-equivariant						
TFN [31]	-	78.1	78.2			
VN-DGCNN [10]	81.4	81.4	81.4			
$TetraSphere_{K=1}$	82.1	82.1	82.3			
$TetraSphere_{K=2}$	82.3	82.3	82.5			
$TetraSphere_{K=4}$	82.2	82.2	82.2			
$TetraSphere_{K=8}$	82.3	82.3	82.4			
TetraSphere $_{K=16}$	82.3	82.3	82.3			

Table 5. Classification acc. (%) on the ModelNet40 shapes under different train/test settings of rotation augmentation. The overall best results are presented in **bold**, and the second best are underlined. Our TetraSphere sets a new state-of-the-art performance for equivariant baselines.

Table 6. Part segmentation: ShapeNet mIoU (%). The overall best results are presented in **bold**, and the second best are <u>underlined</u>. Our TetraSphere sets a new state-of-the-art performance for equivariant baselines.