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In this document we provide the following supplementary contents: 
 

• Video demonstration of generative 3D human model. 

• Results of 3D human generation.  

• Comparison with state-of-the-art methods.  

• Details of network architectures.  

• The semantical UV partitioning. 

• Exemplar of synthetic 2D images. 

• Limitations and future work. 

 

 

1. Video demonstration of generative 3D human model 
Without any 3D or 2D datasets, we constructed a generative model capable of producing visually realistic, 

geometrically accurate and content-wise diverse 3D humans. The generated avatars can be seamlessly animated and 
easily edited. We also demonstrated the scalability of our approach for content-style free adaptation, i.e., portrait or 
Disney cartoon character synthesis. The results are provided in the supplemental video (file ‘3929 video.mp4’).  
 

2. Results of 3D human generation 
By combining the enhanced 3D generative model with two optimization modules, our method achieves the synthesis 

of visually realistic and geometrically accurate high-fidelity 3D human avatars. It enables the production of diverse 
3D humans, covering a wide range of age groups, genders, races, appearances, and clothing styles. Our results of 
synthesized 3D humans rendered in various viewpoints are shown in Figure 1, 2, 3.  

 
 

 
 
 
 
 
 
 

 
 

Supplementary Materials for  

“En3D: An Enhanced Generative Model for Sculpting 3D Humans from  

2D Synthetic Data” 

1Yifang Men, 1Biwen Lei, 1Yuan Yao, 1Miaomiao Cui, 2Zhouhui Lian, 1Xuansong Xie 
1Institute for Intelligent Computing, Alibaba Group 

2Peking University, China 



 

2 

 
 
 

 
Figure 1: Results	of	synthesized	3D	human	in	various	viewpoints. 

 
 



 

3 

 

 
Figure 2: Results	of	synthesized	3D	human	in	various	viewpoints. 
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Figure 3: Results	of	synthesized	3D	human	in	various	viewpoints	
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3. Comparison with state-of-the-art methods 
We provide more comparison results with state-of-the-art methods in Figure 4. 
 

 
(a) EVA3D [3] 

 

Figure 4: Qualitative	comparison	with	state-of-the-art	methods.	
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(b) AG3D [2] 

 
Figure 4: Qualitative	comparison	with	state-of-the-art	methods.	
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(c) EG3D [1] 

 
Figure 4: Qualitative	comparison	with	state-of-the-art	methods.	
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(d) Ours 

 
Figure 4: Qualitative	comparison	with	state-of-the-art	methods.	
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4. Details of network architectures 
For the 3D generative module, the architectures of our triplane generator, neural renderer and discriminators follow 

the implementations in EG3D [1] and the super-resolution network is also used with dual-discrimination. We adopt 
patch-composed rendering by adaptive ROI sampling and full-image decoding from rendered multiple patches, as 
illustrated in Figure 5. This strategy enables feature images with a resolution of 256!  rendered with the same 
computational efficiency as a resolution of 64!. 

 

For the geometric sculpting module, we parametrize DMTET as a MLP to predict the SDF value and the position 
offset for each vertex, following by a tetrahedra layer [5] to extract the triangular mesh. Details of the network structure 
is shown in Table 1. For the explicit texturing module, a differentiable rasterizer from [4] is employed to optimize the 
UV texture map and the computation of UV coordinates are described in Section 5.  

 
 
 

 
Figure	5.	Visualization	of	patch-composed	neural	rendering.	

 
 
 

Table 1: Details of geometric sculptor. 
 

Operation Output Size 

3D points 𝑁! × 3 

Encoder HashGrid 𝑁! × 32 

MLP 

Linear + ReLU 𝑁! × 32 

Linear + ReLU 𝑁! × 32 

Linear (𝑠, 𝛿𝑣), 	𝑁! × 4 

Tetrahedra layer ℳ"#$, 𝑁% × 3 
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5. The semantical UV partitioning 
Based on the canonical properties of synthesized bodies, we semantically split the vertices of the triangular mesh 

into 5 body components and assign the position of each component in UV map with start and end points 
(𝑠𝑡𝑎𝑟𝑡" , 	𝑒𝑛𝑑" , 𝑠𝑡𝑎𝑟𝑡#, 		𝑒𝑛𝑑#	). We rotate each component to be vertical to the horizontal plane and compute the 
corresponding UV coordinates via cylinder unwarping. The split of the UV map is presented in Table 2 and the 
visualization of the final UV texture is shown in Figure 6.  

 
 
 

Table 2: Details of UV splitting. 
 

Component 𝑠𝑡𝑎𝑟𝑡& 𝑠𝑡𝑎𝑟𝑡' 𝑒𝑛𝑑& 𝑒𝑛𝑑' 

Trunk 1/6 0 5/6 1 

Left arm 0 0 1/6 1/2 

Right arm 5/6 0 1 1/2 

Left leg 0 1/2 1/6 1 

Right leg 5/6 1/2 1 1 
 

 
 

  
 

Figure	6:	Visualization	of	explicit	UV	texture	
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6. Exemplar of synthetic 2D images 
The synthetic 2D images initially consists of 7 views covering from horizontal 0$ to 180$, which are flipped for 

full 360$ images. The exemplar of our synthetic 2D images in 7 views are shown in Figure 7. 
 
 

 

 
(a) 0$ view images 

 
 

 
(b) 30$ view images 

 
 

 
(c) 60$ view images 

 
 

Figure 7: Exemplar	of	our	synthetic	images	covering	7	viewpoints. 
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(d) 90$ view images 

 

 
(e) 120$ view images 

 

 
(f) 150$ view images 

 

 
(g) 180$ view images 

 
Figure 7: Exemplar	of	our	synthetic	images	covering	7	viewpoints. 
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7. Limitations and future work 
Due to training on synthetic human images without accessory, our model cannot produce exaggerated accessories (e.g., 
hats) with realistic geometry and appearance. The failure case is shown in Figure 8.  
 
Our model learns a shared 3D human representation with canonical pose utilizing synthetic structured human images. 
Without pose deformation modeling, our method only supports inputting standard human images in A pose for image 
guided synthesis. This constraint could be potentially released by introducing a human re-pose function in the 
preprocess step. Alternatively, exploring the modeling of articulated humans using 2D synthetic data could also 
address this issue and is encouraged for further work.  
 
The proposed framework is not tailor to 3D humans and holds potential to produce more diverse and realistic results 
for other 3D objects (e.g., cars, chairs). The exploration of generating common objects is a promising avenue worth 
pursuing. Additionally, our generative model establishes a manifold, which presents opportunities for attribute editing 
applications. 
 
 

 
Figure	8:	The	failure	case	of	3D	human	wearing	exaggerated	accessories	(e.g.,	hats).	
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