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B. Architecture details
In this section, we discuss the details of the architectures
employed in this work. Tab. 7 details the hyperparameters
of the UNet [41], while Tab. 8 shows the hyperparameters
of Snap Video FIT. Note that to ensure divisibility by larger
powers of 2, for models producing outputs in 64 ⇥ 36px
resolution we introduce a 4px vertical padding, yielding a
model resolution of 64 ⇥ 40px. With respect to vanilla
FITs [8], our model presents architectural differences that
we found beneficial for high-resolution video generation.
First, we configure each patch to span over a single frame
and each patch group to extend in the temporal dimension
to the full extent of the video. We find these modifications
to improve temporal modeling. We keep the spatial dimen-
sion of the patch to 4 ⇥ 4px as we found larger patches to
degrade spatial modeling capabilities of the model. These
settings produce a large number of 147.456 input patches
when processing high-resolution videos. We find the use of
local attention layers to be computationally expensive when
modeling high-resolution videos, so we replace it with feed-
forward operations after each cross attention layer. Lastly,
our FIT makes use of a large number of latent tokens, a pa-
rameter determining the amount of compression applied to
the video representation. With respect to typical FIT con-
figurations using no more than 256 latent tokens, we find
it beneficial to increase their number to 768 when model-
ing videos to enable additional temporal information to be
stored in the latent tokens.

C. Training details
In this section, we present training details for the models
trained in this work, which we summarize in Tab. 9. We
train our model using the LAMB [68] optimizer with a
learning rate of 5e�3 and a cosine learning schedule over
550k steps with 10k warmup steps. To achieve stable train-

U-Net 85M U-Net 284M

Resolution 16⇥ 64⇥ 40 16⇥ 64⇥ 40
Base channels 128 192
Channel multiplier [1, 2, 2, 3] [1, 2, 3, 4]
Number of residual blocks 2 2
Attention resolutions [32, 16, 8] [32, 16, 8]
Attention heads channels 64 64
Conditioning channels 768 768
Label dropout 0.10 0.10
Dropout 0.10 0.10
Use scale shift norm True True

Table 7. Architectural details of our U-Net baselines.

FIT 500M FIT 3.9B FIT 3.9B Up.

Input size 16⇥ 64⇥ 40 16⇥ 64⇥ 40 16⇥ 512⇥ 288
Patch size 1⇥ 4⇥ 4 1⇥ 4⇥ 4 1⇥ 4⇥ 4
Group size 16⇥ 5⇥ 4 16⇥ 5⇥ 4 16⇥ 18⇥ 16
Total patch tokens 2.560 2.560 147.456
Cross att. feedforward X X X
Patch tokens channels 768 1024 1024
Latent tokens count 512 768 768
Latent tokens channels 1024 3072 3072
FIT blocks count 6 6 6
FIT block global layers 4 4 4
FIT block local layers 0 0 0
Patch att. heads channels 48 64 64
Latent att. heads channels 64 128 128
Self conditioning X X X
Self conditioning prob. 0.9 0.9 0.9
Label dropout 0.1 0.1 0.1
Dropout 0.1 0.1 0.1
Positional embeddings learnable learnable learnable
Conditioning channels 768 1024 1024

Table 8. Architectural details of Snap Video FIT models.

ing in our largest model we find it important to introduce the
following mechanisms. We set � = [0.9, 0.99], a weight de-
cay of 0.01, gradient clipping and a total batch size of 2048
videos and 2048 images. We adopt dropout with probabil-
ity 0.1 in the feedforward transformer layers following self
attention operations. Finally, we use an exponential moving
average for the model’s weights with a base decay halflife
of 6k steps.

We implement our model in PyTorch [36] and perform
all experiments on Nvidia A100 GPUs.

D. Additional Evaluation Results and Details
In this section, we provide additional evaluation results for
our model. In Sec. D.1, we perform ablations on the sam-
pler parameters. Sec. D.2 presents user study results. In



U-Nets FIT 3.9B FIT 3.9B Up.

Optimizer Adam [26] LAMB LAMB
Learning rate 1e�4 5e�3 5e�3

Learning rate decay cosine cosine cosine
Steps 550k 550k 370k
Batch size 4096 4096 320
Samples seen 2.25B 2.25B 118M
Beta [0.9, 0.999] [0.9, 0.99] [0.9, 0.99]
Weight decay 0.01 0.01 0.01
Warmup steps 10.000 10.000 10.000
EMA halflife steps 6.000 6.000 6.000

Table 9. Training hyperparameters for our experiments.

Figure 5. FVD and CLIPSIM on our internal dataset
in 64 ⇥ 36px resolution as a function of the classi-
fier free guidance weight. Points represent weights of
[0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16].

Sec. D.3 and Sec. D.4 we show samples against baselines
and additional samples from our method. In Sec. D.5, we
describe how to generate longer videos at high framerate.
Finally, Sec. D.6 presents evaluation details for UCF101
[55].

D.1. Sampler Parameters Ablations

Choices in the sampling parameters can affect the perfor-
mance of diffusion models significantly. In Fig. 5, we show
the impact of classifier free guidance [19] on model’s per-
formance. We produce 10k samples using the first-stage
model and report FVD and CLIPSIM at various guidance
values, computed on 10k samples with a 40 step determin-
istic sampler. We find that classifier free guidance can im-
prove both FVD and CLIPSIM, but notice increased sam-
ple saturation at high classifier free guidance scales. We
adopt dynamic thresholding and oscillating classifier free
guidance [43] which we find effective in reducing the phe-
nomenon.

In Fig. 6, we evaluate performance of the model under
the same setting, but varying the number of sampling steps.
We find that the model produces high-quality samples al-
ready at 64 steps and that FVD improves until 256 steps.

Figure 6. FVD on our internal dataset in 64 ⇥ 36px resolution as
a function of the sampling steps and sampler type.

Photorealism Video-Text Align. Mot. Quant. Mot. Qual.

Imagen Video [21] 66.9 54.3 49.4 56.3
PYoCo [13] 63.3 64.9 57.1 63.9
Video LDM [4] 61.7 64.4 62.2 65.8
Make-A-Video [48] 80.0 82.2 82.2 75.6

Table 10. User study on photorealism, video-text alignment,
motion quantity and quality on publicly available samples from
closed-source methods. % of votes in favor of our method.

D.2. User Studies
To complement the evaluation, we run a user study on a set
of publicly released samples from Make-A-Video [48], PY-
oCo [13], Video LDM [4] and Imagen Video [21]. For each
method, we collect publicly available samples and prompts,
generate corresponding samples from Snap Video, and ask
participants to express a preference in terms of photore-
alism, video-text alignment, motion quantity and quality,
collecting 5 votes for each sample. Results are shown in
Tab. 10 and samples are provided in Fig. 4, Fig. 7 and the
Website. Our method shows increased photorealism with re-
spect to the baselines, presents higher video-text alignment
with respect to all methods except Imagen Video and con-
sistently surpasses baselines in terms of motion quality (see
flickering artifacts and temporally inconsistent backgrounds
in scenes with large camera motion), a finding we attribute
to our joint spatiotemporal modeling approach.

D.3. Qualitative Results Against Baselines
In Fig. 7 and the Website, we present qualitative results of
our method against baselines on samples publicly released
by the authors of Make-A-Video [48], PYoCo [13], Video
LDM [4] and Imagen Video [21]. Our method produces
videos with natural motion and can handle scenes with large
motion and camera changes while preserving temporal con-
sistency. On the other hand, we observe that baselines often
present flickering artifacts and temporally inconsistent ob-
jects in case of large motion.



In Fig. 8 and the Website, we provide qualitative results
comparing our method to publicly accessible state-of-the-
art video generators including Gen-2 [11], PikaLab [1] and
Floor33 [17]. Our method produces results that are more
aligned to the prompts and, differently from the baselines,
which often produce dynamic images, our method produces
temporally coherent videos with large amounts of motion.

D.4. Additional Qualitative Results
Complex Prompts We present in Fig. 9, Fig. 10 and the
Website additional samples generated by our method on
a set of prompts gathered from ChatGPT, Make-A-Video
[48], PYoCo [13], Video LDM [4], Imagen Video [21], and
the Evalcrafter [31] benchmark. Our method can synthe-
size a large number of different concepts. Most importantly,
it can produce videos with challenging motion including
large camera movement, POV videos, and videos of fast-
moving objects. Notably, the method maintains temporal
consistency and avoids video flickering artifacts. We as-
cribe these motion modeling capabilities to the joint spa-
tiotemporal modeling performed by our architecture.

Novel Views We qualitatively evaluate the capabilities of
the proposed method in producing novel views of objects.
To do so, we build prompts using one of the following tem-
plates Camera circling around a hobjecti, Camera orbit-

ing around a hobjecti or Camera moving around a hobjecti,
where hobjecti represents a placeholder for the object to
generate. Results are shown in Fig. 11 and the Website. We
find that the model is capable of generating plausible novel
views of objects, suggesting that it possesses an understand-
ing of the 3D geometry of the modeled objects.

Samples Diversity We qualitatively assess the capabili-
ties of the method of generating diverse samples for each
prompt. In Fig. 12 and the Website we show three samples
produced for a set of prompts and note that the method is
capable of producing diverse samples.

UCF 101 In Fig. 13 and the Website, we present qualitative
results produced by our mehthod for zero-shot UCF101 [55]
evaluation.

D.5. Hierarchical Video Generation
We train our method to generate videos with a fixed number
of frames and variable framerate. We exploit this charac-
teristic and devise a hierarchical generation strategy to in-
crease video duration and framerate by conditioning gener-
ation on previously generated frames. In particular, to con-
dition generation on already available frames, we adopt the
reconstruction guidance method of Ho et al. [22]. We de-
fine a hierarchy of progressively increasing framerates and
start by autoregressively generating a video of the desired
length at the lowest framerate, at each step using the last
generated frame as the conditioning. Subsequently, for each

successive framerate in the hierarchy, we autoregressively
generate a video of the same length but conditioning the
model on all frames that have already been generated at the
lower framerates. We show samples in the Website.

D.6. Zero-Shot UCF101 Evaluation

UFC101 [55] is a dataset of low-resolution Youtube videos.
To better match our generated outputs to its distribution, we
condition the model to produce videos with a low original
resolution through the resolution conditioning mechanism
(see Sec. 3.4). Following [13], since UCF101 class labels
do not always have sufficiently descriptive names, we pro-
duce a prompt for each class which we report in the fol-
lowing: applying eye makeup, applying lipstick, a person

shooting with a bow, baby crawling, gymnast performing

on a balance beam, band marching, baseball pitcher throw-

ing baseball, a basketball player shooting basketball, dunk-

ing basketball in a basketball match, bench press in a gym,
a person riding a bicycle, billiards, a woman using a hair

dryer, a kid blowing candles on a cake, body weight squats,
a person bowling on bowling alley, boxing punching bag,
boxing training on speed bag, swimmer doing breast stroke,
brushing teeth, a person doing clean and jerk in a gym, cliff

diving, bowling in cricket match, batting in cricket match,
cutting in kitchen, diver diving into a swimming pool from a

springboard, drumming, two fencers have fencing match in-

doors, field hockey match, gymnast performing on the floor,
group of people playing frisbee on the playground, swim-

mer doing front crawl, golfer swings and strikes the ball,
haircuting, a person hammering a nail, an athlete perform-

ing the hammer throw, an athlete doing handstand push

up, an athlete doing handstand walking, massagist doing

head massage to man, an athlete doing high jump, group

of people racing horse, person riding a horse, a woman

doing hula hoop, man and woman dancing on the ice, ath-

lete practicing javelin throw, a person juggling with balls, a

young person doing jumping jacks, a person skipping with

jump rope, a person kayaking in rapid water, knitting, an

athlete doing long jump, a person doing lunges exercise in

a gym, a group of soldiers marching in a parade, mixing in

the kitchen, mopping floor, a person practicing nunchuck,
gymnast performing on parallel bars, a person tossing pizza

dough, a musician playing the cello in a room, a musician

playing the daf drum, a musician playing the indian dhol,
a musician playing the flute, a musician playing the guitar,
a musician playing the piano, a musician playing the sitar,
a musician playing the tabla drum, a musician playing the

violin, an athlete jumps over the bar, gymnast performing

pommel horse exercise, a person doing pull ups on bar, box-

ing match, push ups, group of people rafting on fast moving

river, rock climbing indoor, a person lifting on a rope in

a gym, several people rowing a boat on the river, a man

and a woman are salsa dancing, young man shaving beard



with razor, an athlete practicing shot put throw, a teenager

skateboarding, skier skiing down, jet ski on the water, a per-

son is skydiving in the sky, soccer player juggling football,
soccer player doing penalty kick in a soccer match, gym-

nast performing on still rings, sumo wrestling, surfing, kids

swing at the park, a person playing table tennis, a person

doing TaiChi, a person playing tennis, an athlete practic-

ing discus throw, trampoline jumping, typing on computer

keyboard, a gymnast performing on the uneven bars, peo-

ple playing volleyball, walking with dog, a person standing

doing pushups on the wall, a person writing on the black-

board, a person at a Yo-Yo competition.
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"Flying through an intense battle between pirate ships in a stormy ocean." "A cyborg koala dj in front of a turntable, in heavy raining futuristic tokyo rooftop cyberpunk night,
sci-fi, fantasy, intricate, neon light, soft light, smooth, sharp focus, illustration."

"A knight riding on a horse through the countryside"

"A cyborg koala dj in front of a turntable, in heavy raining futuristic tokyo rooftop cyberpunk night,
sci-fi, fantasy, intricate, neon light,  soft light, smooth, sharp focus, illustration."

"A horse galloping through van Gogh's Starry Night."
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"A panda taking a selfie."

"A blue unicorn flying over a mystical land"

"A very happy fuzzy panda dressed as a chef eating pizza in the New York street food truck."

"A dog wearing virtual reality goggles in sunset, 4k, high resolution."
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"A teddy bear washing dishes."

"A panda playing on a swing set"

"A guineapig painter is painting on the canvas, anthro, very cute kid's film character, concept artwork [...]"

"Two raccoons are playing drum kit in NYC Times Square, 4k, high resolution."

Figure 7. Comparison of Snap Video to publicly released samples from Make-A-Video [48], PYoCo [13], Video LDM [4] and Imagen
Video [21]. Our method produces temporally coherent motion while avoiding video flickering. Best viewed on the Website.
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"A group of teenagers skateboard in an empty parking lot."
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"Teenage girl in red skirt enters a green-lit cave."
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"A couple shares a milkshake with two straws at a retro diner."
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"Three travelers wander through the bustling streets of Times Square, taking in the dazzling lights and energy."
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"A musician strums his guitar, serenading the moonlit night."
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"A horse gallops through a field, kicking up dust with its hooves."

Figure 8. Comparison of Snap Video to the publicly accessible state-of-the-art video generators Gen-2 [11], PikaLab [1] and Floor33 [17].
Rather than producing dynamic images, our method generates videos with large amounts of temporally coherent motion. Best viewed on
the Website.



"A blue pickup truck with a rhinoceros in its flatbed."

"A horse gallops through a field, kicking up dust with its hooves."

"An astronaut feeding ducks on a sunny afternoon, reflection from the water."

"In a high-tech control room, otters operate an imaginary spaceship console, embarking
on an interstellar adventure. Cinematic lighting effects enhance the futuristic setting,

and the camera executes quick cuts to showcase the excitement of their space journey."

"A fox dressed in suit dancing in park."

"A trio of fashionable, beret-clad cats sips coffee at a chic Parisian cafe., time-lapse photography."

"A cute golden hamster throwing punches wearing pair of boxing gloves in a boxing ring."

"In a quaint library setting, otters don scholarly attire and engage in a heated debate over miniature books.
Cinematic tracking shots following their animated gestures,

highlighting the comical intensity of the intellectual otter discourse."

"In a sunlit meadow, otters don tiny bowties and engage in a formal tea party on a miniature table.
Cinematic close-ups of their adorable expressions, camera smoothly circling the scene."

"Within a vibrant market scene, otters expertly juggle an array of colorful fruits, creating a lively spectacle.
Cinematically zoom in to showcase their dexterity and the vibrant hues of the fruits,

with the 4K resolution highlighting the rich textures."

"A painting of a wise old owl in a tweed jacket puffs on a pipe."

"Two elephants are playing on the beach and enjoying a delicious beef stroganoff meal.
Camera rotates anticlockwise."

"Three hamsters run on a wheel, exercising in their cage."

"With the style of Van Gogh, A young couple dances under the moonlight by the lake."

"3 sheep enjoying spaghetti together."

"An astronaut playing with sparklers for Diwali, photorealistic."

"Large motion, a group of six rabbits dressed in Victorian attire gathers for a garden tea party."

"In a chic urban kitchen, a cat donned in a chef's hat expertly kneads dough on a marble countertop.
Cinematic close-up shots capture the feline's precise movements.

Camera smoothly orbits around the cat, showcasing culinary prowess."

Figure 9. Additional samples generated from Snap Video on a collection of prompts gathered from ChatGPT, baseline methods and the
Evalcrafter [31] benchmark. Best viewed on the Website.



"A motorcycle race through the city streets at night.""A man cruises through the city on a motorcycle, feeling the adrenaline rush."

"A man lifts weights at the gym, working on his strength."

"first person perspective, a four-piece band on a stage in front of a small crowd"

"Large motion, a flag with a dinosaur on it."

"In a potter's studio, skilled hands mold clay into a delicate sculpture. Utilize sweeping arcs to highlight
the shaping process, emphasizing the intricate details emerging from the artist's touch."

"The brides of Dracula."

"Amidst the ruins of a post-apocalyptic city, a lone robot scavenger sifts through debris,
its sensors scanning for salvageable materials. Cinematic 4K shots capturing the gritty atmosphere,

camera tilting and panning to emphasize the desolation."

"Within a futuristic factory, robots assemble intricate machinery.
Render detailed close-upsof robotic movements and precision.

Use a mix of steady pans and close-ups to convey the complexity and efficiency of the assembly process."

"Teddy bear walking down 5th Avenue, front view, beautiful sunset, close up, high definition, 4k." "In Macro len style, a photograph of a knight in shining armor holding a basketball"

"A couple enjoys a romantic gondola ride in Venice, Italy." "Drove viewpoint, fireworks above the Parthenon."

"A child in the air while jumping on a trampoline, hand-held camera."

"Vintage cars race along a winding coastal highway at sunset.
Cinematically capture the gleaming chrome details and classic aesthetics,

while the camera smoothly glides alongside, framing the cars against the scenic backdrop."

"In the heart of a city's underground racing scene, modified cars with roaring engines compete
in illegal street races. Showcase the intense acceleration, drifts around corners,

and the adrenaline-pumping energy of the night races."

"Noodles falling into a bowl of soup."

"Within a clockmaker's workshop, intricate gears turn with precision. Employ precise rotations and
close-ups to reveal the mechanical beauty, emphasizing the fine craftsmanship of the timepiece."

Figure 10. Additional samples generated from Snap Video on a collection of prompts gathered from ChatGPT, baseline methods and the
Evalcrafter [31] benchmark. Best viewed on the Website.



"Camera circling around a dog." "Camera circling around a happy squirrel."

"Camera orbiting around the face of an elderly men with a white beard." "Camera circling around the tower of Pisa."

"Camera circling around a sports car." "Camera orbiting around a truck."

"Camera moving around a parked airplane." "Camera moving around a parked helicopter."

"Camera circling around a chair." "Camera circling around a chair made of ice."

"Camera circling around a steam locomotive." "Camera orbiting around a miniature train model."

"Camera circling around an elegant round table." "Camera circling around a western saloon."

"Camera circling around a stunning watch." "Camera orbiting around a marble statue masterpiece, black background."

"Camera circling around a car made of vegetables." "Camera orbiting around a vase with fruit in it."

"Camera circling around a plate with delicious sushi in it." "Camera circling around a house made of sushi."

Figure 11. Videos produced by Snap Video for prompts eliciting circular camera motion around each object. Best viewed on the Website.



"Amidst a lush meadow, otters don aprons and chef hats, skillfully preparing a miniature sushi feast on a lily pad.
Capture the detailed sushi-making process with dynamic close-ups,

and the camera executing a graceful orbit around the culinary otters to showcase their precision."

"A cat wearing sunglasses and working as a lifeguard at a pool."

"An astronaut cooking with a pan and fire in the kitchen, high definition, 4k." "In macro lens style, a photograph of a knight in shining armor holding a basketball."

"A man with a skull face in flames walking around Piccadilly circus." "A burning volcano.."

"Follow a mountain biker descending a rugged trail. Utilize a mix of drone shots and helmet-mounted cameras to capture
the breathtaking landscape,detailed bike maneuvers, and the adrenaline-fueled journey down the mountain in cinematic 4K."

"A dirt bike navigates through a dense forest trail. 4K close-up of the bike maneuvering through foliage,
camera follows the rider's perspective, creating an immersive experience of the off-road adventure."

Figure 12. Diversity in samples produced by Snap Video for the same prompt. See additional samples on the Website.



"Young man shaving beard with razor." "Brushing teeth."

"A person kayaking in rapid water." "Rock climbing indoor."

"A person doing pull ups on bar." "A person doing lunges exercise in a gym."

"Two fencers have fencing match indoors." "Drumming."

"A kid blowing candles on a cake." "A person writing on the blackboard."

Figure 13. Samples generated by Snap Video for zero-shot evaluation on UCF101 [55]. Best viewed on the Website.



E. Derivation of EDM Denoising Objective
We derive the denoising objective L(F✓) expressed in terms of F✓ for the EDM framework where we modify the forward
process introducing the input scaling factor �in:

L(F✓) = E�,x,✏

h
w(�)

��F✓(cin(�)x�)� cnrm(�)Ftgt
��2
2

i
, (4)

We start from the denoising objective L(D✓) as in the original formulation:

L(D✓) = E�,x,✏
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i
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Where we recall the definition of D✓:

D✓(x�) = cout(�)F✓ (cin(�)x�) + cskip(�)(x�). (6)

We also recall the definitions of cin(�), cout(�), cskip(�) , �(�):
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Inserting the definition of D✓ and of cin(�), cout(�), cskip(�) into Eq. (4) we obtain:
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From which follows that:

Ftgt = �x� �2
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Note that the training target has a spurious term �2
data(�in�1)
�in�

x which approaches infinity as � approaches 0.
From this formulation we also notice the link between EDM and the v-prediciton framework. First, the training target

consists in a rescaled and negated v-prediction objective with v = �2
data✏��x. Second the loss weight equals to a reweighted

1 + SNR v-prediction framework [45] weighting:
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Thus, when �data = 1, EDM is equivalent to the v-prediciton formulation. Starting from these observations, we rewrite the
framework so that it exhibits a well-formed Ftgt for all values of � by avoiding the spurious term �2

data(�in�1)
�in�

x.



F. Derivation of Our Diffusion Framework
We start the derivation of our diffusion framework by imposing that the training target equals the original EDM v-prediction
objective for all values of �in, without the spurious term �2

data(�in�1)
�in�

x affecting the original formulation for �in 6= 1 (see
Appx. E).

Ftgt = v = �2
data✏� �x. (15)

We then derive cnrm(�) such that cnrm(�)Ftgt, the function approximated by F✓, has unit variance:

Varx,✏
⇥
cnrm(�)Ftgt

⇤
= 1 (16)

Varx,✏
h
cnrm(�)

�
�2

data✏� �x
�i

= 1 (17)

cnrm(�)
2 =

1

Varx,✏
h�
�2

data✏� �x
�i (18)

cnrm(�)
2 =

1

�2
data(�

2
data + �2)

(19)

cnrm(�) =
1

�data
p
(�2

data + �2)
. (20)

Following standard normalization practices, we define cin(�) so that the model input has unit variance:

Varx,✏
⇥
cin(�)(

x

�in
+ �✏)

⇤
= 1 (21)

cin(�)
2 =

1

Varx,✏
⇥

x
�in

+ �✏
⇤ (22)

cin(�)
2 =

1
�2

data
�2

in
+ �2

(23)

cin(�) =
1r

�2
data
�2

in
+ �2

. (24)

To derive the remaining framework components, we first recall the definition of our forward process:

x� =
x

�in
+ �✏, (25)

and note that x can be recovered from x� and v as:

x =
x� � �

�2
data

v

1
�in

+ �2

�2
data

, (26)

and consequently

v =
�2

datax� � (�
2
data
�in

+ �2)x

�
. (27)

To recover cskip(�) and cout(�) we note from the definition of Ftgt = v and the loss expressed in Eq. (4) that as it approaches
zero the following holds:

cnrm(�)Ftgt = F✓(cin(�)x�) (28)

v =
F✓(cin(�)x�)

cnrm(�)
(29)

v = �data

q
�2 + �2

dataF✓(cin(�)x�). (30)



Substituting Eq. (30) into Eq. (26) we obtain:

D✓(x�) = x =
x� � �

�2
data

v

1
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+ �2

�2
data

(31)

=
x�

1
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�2
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dataF✓(cin(�)x�)
1
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(33)

= cskip(�)x� + cout(�)F✓(cin(�)x�), (34)

from which we recognize:

cskip(�) =
�in�2

data
�in�2 + �2

data
, cout(�) = ��in��data

p
�2 + �2

data
�2

data + �in�2
. (35)

We set the loss weight �(�) to the same value as EDM:

�(�) =
1

�2
data

+
1

�2
. (36)

To recover w(�), inserting the definition of D✓ (Eq. (6)) and of cin(�), cout(�), cskip(�), �(�) into Eq. (4) we obtain:
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from which:

w(�) =
(�2 + �2

data)
2

(�2 +
�2

data
�in

)2
. (43)

In conclusion, the proposed diffusion framework maintains the training target Ftgt equal to the original EDM training
target for all values of the input scaling factor �in, ensuring that F✓ learns the same denoising function while giving control
on the quantity of the signal present in the input. In addition, our framework preserves the original loss weight �(�), giving
control over the input scaling factor without affecting the weight of the loss over the different noise levels.



G. Discussion
In this section, we describe the limitations of our framework
(see Sec. G.1) and discuss societal impact (see Sec. G.2).

G.1. Limitations

Snap Video presents limitations which we discuss in this
section.
Text Rendering We find our framework to often spell text
incorrectly. We attribute this finding to a lack of high-
quality videos depicting text matched by the exact descrip-
tion of the displayed text. Automated pipelines for OCR can
be employed on the training dataset to address this issue.
Object count Similarly, the generator may not render the
requested number of entities, especially when the cardinal-
ity of the objects is high. The behavior can be explained by
the difficulties in learning correct object counts from video
data, where descriptions can be noisy, objects can enter and
exit the scene and the camera can move widely, changing
the cardinality of objects in each frame.
Positional understanding While the generator can place
objects in positions requested by the prompts, we find it
can not reliably synthesize videos corresponding to prompts
entailing complex positional relationships between multiple
entities such as “A stack of three cubes: the top one is blue,

the bottom one green and the middle one is red”.
Stylization We find that our model can generate stylized
content (see Fig. 9), but may present failure cases where the
style specification is ignored or the stylized contents only
translate in the scene rather than being animated. We at-
tribute this finding to the lack of model training on a filtered
set of data presenting high aesthetic scores which we find
to contain textual descriptions related to artistic and visual
styles with higher probability.
Negation Some challenging prompts such as “A glass of

juice next to a plate with no bananas in it” may lead the
model to ignore the negation, resulting in the generation of
all entities.
Block artifacts Videos may contain content with a very
large amount of motion, leading to a greater difficulty in
compressing its content to a latent representation of fixed
size. In such situations we find that the model may produce
patch tokens that do not blend together in a perfect manner,
resulting in some visible patches in the videos, akin to video
compression artifacts.
Resolution Our two-stage model cascade generates videos
in 512 ⇥ 288px resolution. We note that generating video
content aligning to the given prompt and presenting tem-
porally coherent motion are the most critical problems in
video generation, and possible artifacts in these categories
are already visible in 512 ⇥ 288px resolution, as shown in
our comparisons to baselines. We also note that cascaded
model stages are independently trained and agnostic to the

employed previous-stage generator. Thus, given an upsam-
pler from 512⇥ 288px to a higher resolution, any improve-
ment shown in 512⇥288px resolution with respect to base-
lines is expected to produce higher resolution results of cor-
respondingly improved quality. We consider the integration
of additional cascade stages as an interesting venue for fu-
ture work.

G.2. Societal Impact
Text-to-video generative models are evolving rapidly [4, 13,
21, 62] and hold promise to empower users with new and
powerful ways to express their creativity once accessible
only to trained experts such as artists and digital content
creators. With such improvements comes a greater risk that
generated results may be perceived as real with the potential
for nefarious individuals to generate harmful or deceiving
content. Our model is exposed to a broad range of con-
cepts during training and makes use of a T5 [39] text en-
coder that was trained on unfiltered internet data, making
it necessary to guard it against such possible uses. In ad-
dition, the model generates data following its training data
distribution which implies that potential biases that may be
present in the dataset can be reflected in the model outputs.
To avoid misuse, we do not make the model publicly acces-
sible and plan to put in place data cleaning, prompt filtering
and output filtering techniques and watermarking as addi-
tional safeguards.
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