
Generating Illustrated Instructions

Supplementary Material

7. Related Work: Text-to-Video Generation
Works in the text-to-video setting [5, 13, 23, 24, 38, 54, 62,
66, 73] are similar to ours in generating multiple images
(frames) together, but are typically limited to short time
scales, where visual content only changes in minor ways
from frame to frame. Some recent works aim to generate
longer videos [59, 68], however at a cost of substantial pa-
rameter overhead over their base T2I models. Many of these
methods also use architectural design choices that are spe-
cific to this setting, where there is not substantial change
from frame to frame, such as factorized spatial and tempo-
ral attention; this does not suit our setting, where there are
much larger changes across consecutive images.

8. Tiling Comparison
While the attention operations in our architecture are capa-
ble of incorporating context across the full sequence irre-
spective of the stacking orientation, one might hypothesize
that convolutional operations may not have a wide enough
receptive field to obtain the same results with different tiling
strategies. We experiment with a closer to square orien-
tation for comparison to evaluate this hypothesis. Specifi-
cally, we compare to 8x6x4x32x32 ! 8x4x(3x32)x(2x32)
stacking (closer to square), and find the results are in-
deed similar. In particular, human evaluation gives a win
rate of 45.9% for the (3x2) orientation, near even; GF is
slightly higher (79.3), SF is slightly lower (60.7), and CIC
is marginally higher (50.5). This suggests that the tiling
strategy does not have a substantial impact on the model’s
performance.

9. Latent Diffusion Models Preliminaries
Latent diffusion models [49] model a data distribution in
the latent space of another model, such as a VAE [26]. The
latent diffusion model is trained to generate samples from
the data distribution p(x) in the latent space, induced by the
encoder E , via gradual denoising. These samples can then
be decoded by the VAE decoder D to produce samples from
the approximated data distribution. The objective matches
the form of our Eq 3.

10. LLM inference prompt engineering
We find that simple prompting strategies suffice to have the
LLM produce outputs in the format we want. Specifically,
we use the following prompt:

{INPUT_TEXT} Write your response in the

form of a goal "Goal: {GOAL}" followed

by concise numbered headline steps,

each one line, without any other text.

Use at most 6 steps.

where {INPUT TEXT} is any user input, such as those
shown in the figures. If only a goal is provided, we provide
the input text as “How can I {GOAL}?”, for example “How
can I make colored ice?”.

11. Data
We repurpose the VGSI dataset [67] for generative pur-
poses. The original dataset is split by step-image pairs. We
note that this splits images from a single goal across training
and validation. We thus recombine the data, group by asso-
ciated goal, and then create new splits. Each data point we
create is formed by a string of goal text as well as varying
numbers of pairs of step text strings and associated images.
The distribution of the number of steps is seen in Figure
Figure 4. We find that the overwhelming majority of arti-
cles contain less than 6 steps. The training set consists of
95328 goals for a total of 476053 step-image pairs. The
validation set, after filtering only for goals in the ‘Recipe’
category, consists of 1711 goals for 9473 step-image pairs.

12. Metrics
Goal Faithfulness (GF). We draw on the literature from
Visual Goal-Step Inference to define a metric for goal faith-
fulness. The intuition is as follows. An image should,
typically, be more associated with the text for the goal it
was made for than for the text of other goals. We can
measure this association by computing the cosine similarity
between the image and the goal text with pretrained con-
trastive vision-language models such as CLIP [47]. How-
ever, CLIP scores are notably miscalibrated when compar-
ing across different image-text pairs. Thus, to make the met-
ric meaningful, we must compare the similarity scores to
the similarity with other goals. We accomplish this by con-
structing multiple-choice questions as in VGSI [67]. For
each image, we compare the CLIP similarity score with the
correct goal text to the CLIP similarity scores with the texts
of three other randomly selected goals. We then compute
the accuracy of the model in choosing the correct goal text.
While VGSI uses this metric with a fixed dataset to evalu-
ate their vision-language models, we instead fix the vision-
language model used in order to evaluate the data being gen-
erated.



Step Faithfulness (SF). As mentioned in § 3, no matter how
well an image reflects the overall goal, it is useless if it does
not illustrate the step it serves to illustrate. Inspired by Goal
Faithfulness, we can define a similar metric for step faith-
fulness. An image should be more similar to the text for the
step it was made for than for other steps. In particular, it
should be more similar to the text than other steps with the
same goal. It is worth noting that the step faithfulness met-
ric varies in magnitude depending on the number of steps
(N ) in the sequence. As the number of steps increases, the
chance that any individual step will have a visual that is not
strongly associated with the caption increases, resulting in
lower values. However, for a fixed N , comparison between
models is meaningful.
Cross-Image Consistency (CIC). Finally, a key compo-
nent of the Illustrated Instructions task is that a set of im-
ages is generated rather than a single image. These images
are not simply independent. If a particular set of ingredients
is shown for “gather the ingredients,” then the same ingre-
dients should be shown for “mix the dry ingredients.” More
generally, we would like to avoid jarring inconsistencies be-
tween images in the same sequence, such as objects chang-
ing color or number, etc. We can measure this by computing
the DINO similarity between the images for each step. We
use DINO [7] as the measure of visual similarity over CLIP
as it reflects visual over semantic features, which are more
relevant for consistency across images. This has been noted
in work for personalized image generation, such as Dream-
Booth [50]. CLIP features, in particular, tend to be invariant
to the aspects of the image that are most relevant for consis-
tency, such as color, number of objects, style, and more.
FID. We compute FID with respect to the ground truth
dataset – specifically, the 9473 images of the validation set
are used as the reference distribution. We use the clean-fid
[45] to avoid common pitfalls in FID computation.
Human Evaluation. We show the outputs of each model
being compared in a two-way comparison side by side, as
shown in Figure 11. For human evaluation, we select a ran-
dom subset of 140 goals that are fixed across evaluations
from the validation set. We ask annotators to select which of
the two articles they prefer (or if they are tied). As in previ-
ous work [20], we find that providing criteria for evaluators
to consider during evaluation and requiring a justification
for the ultimate decision leads to substantially higher qual-
ity evaluations. We use 3 annotators per comparison. To en-
sure quality of annotation, we selected annotators with the
Amazon Mechanical Turk “Master” qualification that had
a > 95% approval rate with at least 1000 prior tasks com-
pleted. For each method, we consider how many goals had a
strict majority of annotators pick that method’s generations.
Tied cases are removed prior to win rate computation. We
report the percentage of majority wins for each method. We
find that on average 80% of annotators agreed with the de-

cision for a given sample.

13. Additional Diffusion Baselines
We include comparisons with two additional baselines here
for completeness: a model using a joint encoding for the
goal and step text, and a model that only uses the step text
as conditioning.

The goal+step joint-encoding ablation obtains high GF
(91.6), similar to the frozen model that also operates on a
joint-encoding, reflecting that the goal text dominates the
embedding. Finetuning, however, improves SF (50.2) over
the frozen model. The CIC increases slightly (51.6) as the
influence of the goal information on all images is reduced.

The step-only baseline, as expected, yields much lower
GF (59.5) as it does not have the goal information; but much
higher SF (77.2). The cross-image consistency (CIC) wors-
ens substantially (53.1) as there is no shared goal informa-
tion to tie the steps together. This tradeoff leads to overall
similar performance to the separate-encoding model in hu-
man evals, strongly under-performing our final model.

14. Training/Inference Cost
StackedDiffusion needs only 1 node with 8 GPUs to train,
making it easily accessible and reproducible for the broader
research community. Spatial tiling allows every step to be
generated in parallel, maximally utilizing the GPU compu-
tation power. Hence, in spite of attending to features for all
steps at once, StackedDiffusion takes about the same infer-
ence time as a single-step model that requires N forward
passes to generate all the steps. To train to convergence,
StackedDiffusion took 9.7 hours, only marginally higher
than single-step finetuning (7 hours) on 8 A100 GPUs.

15. StackedDiffusion implementation Details
The U-Net used in the in-house model we build on largely
follows the architecture used in [49], with a T5-XXL text
encoder. The output channels of each block are changed
to (320, 640, 1280, 1280). The GroupNorm epsilon value
is 10�5. The input text condition uses additional projec-
tion and attention layers before being fed into the U-Net as
in [49]. Specifically, this consists of an attention block with
4096 dimensions followed by layer normalization, a linear
projection from 4096 to 1280 dimensions, and another layer
normalization, and a final linear layer from 1280 to 1280 di-
mensions.

16. GILL Comparison Details
We first tried to use GILL [29] directly with the default set-
tings other than the maximum number of output tokens be-
ing set to 512 so as to be an appropriate length for a full
article. We enable both generation and retrieval for GILL.
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Figure 11. Human evaluation setup.



We experimented with prompts such as “Please write me a
step-by-step article for the goal GOAL” and many variants
of it. Despite this, we found that the generations were al-
ways substantially shorter than a full article, likely due in
part to the short length of the training data GILL has seen.
We experimented with different values for the temperature
as well as other parameters, but were unable to produce
longer outputs that would adequately illustrate a goal. The
text quality of these outputs was also very low. For instance,
when prompted about the goal “How to Make Apple Pie,”
GILL responded “I can’t imagine why you would want to
do this.”. Typically, the outputs would comprise text for a
single step or a single image, and we did not observe any
instances of multiple.

Goal: Cook basic noodles
Step 1: Bring water 
to a rolling boil on 
the stove.

Step 2: Add the 
noodles and boil for 
8-10 minutes.

Step 3: Drain the 
water and end the 
cooking process.
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Figure 12. Comparison with our GILL++ .

Because of this, we elected to try to surmount the lan-
guage modeling difficulties of GILL and see how well it can
perform when given text from the same LLM used for our
experiments, which we call “GILL++”. This would evaluate
the image generation and retrieval capabilities of GILL on
their own. (To some extent, this does defeat the purpose of
a multimodal generative model; it reflects the limitations of
current generative models.) We performed LLM inference
as described in Appendix § 10. We provided the generated
text to GILL with the prompt “Please illustrate the step:
{STEP} for the goal: {GOAL}”. We also experimented
with various values of the “sf” (scaling factor) inference pa-
rameter, which the GILL codebase comments: “increase to
increase the chance of returning an image”. However, the
model did not always produce an image even when increas-
ing this value. The eventual parameters we arrived at for
GILL++ were a scaling factor of 1.4, temperature of 0.6,
top p of 0.95, and all other parameters left the same. A
qualitative comparison can be seen in Figure 12. We find
that the image generations still remain inferior to ours even
when the text is fixed.

17. Retrieval Baselines
We implement two separate retrieval-based baselines that
use real images for the illustrations of each step. We de-
scribe these both below.

17.1. LLM + CLIP
The LLM+CLIP baseline is a combination of text generated
by an LLM and real images retrieved from that text. We
prompt the LLM the same way as for the final StackedDif-
fusion model. After obtaining these steps, we retrieve the
top image from the training dataset using CLIP similarity.
For each step, we rank all images in the training set by their
CLIP similarity to that step’s text, and use the most similar
image for each. Each of these images can come from any
disparate goal in the training set.

17.2. Goal Retrieval
For the goal retrieval baseline, we pick the closest full arti-
cle from the training set to compare to. The intent of this
baseline is to show that the model does not simply repro-
duce the closest article it saw during training but rather gen-
erates new articles. We use the CLIP text similarity compare
the generated goal text to the training set. We then pick the
closest article to the generated goal text. We use the steps
from this article as the steps for the generated article. This
baseline is similar to the LLM + CLIP baseline, but instead
of using the LLM to generate the steps, we use the steps
from the closest article in the training set and simply use
the images associated with those ground-truth steps.

18. Additional Qualitative Results
We present additional qualitative results in Figure 13, Fig-
ure 14, Figure 15, Figure 16, Figure 17, Figure 18, Fig-
ure 19, and Figure 20. In particular, we note that Figure 20
shows that StackedDiffusion can generate articles outside
of the recipe domain, such as for furniture repair.

19. Failure Cases
In addition, we present examples of failure cases in Figs. 21
and 22. We observe one failure mode in being over-
consistent: while Step 3 says to mix in ‘another’ bowl, the
model ends up producing a bowl that looks similar to the
bowl in Step 2. We also observe a case where the model
finds consistency difficult to produce: geometric arrange-
ments seem to be considered similarly, making a 3x3 grid
of cupcakes into a 2x4 grid.



Step 1: Mix dry 
ingredients.

Step 2: Add green 
food coloring and mix 
with wet ingredients.

Step 3: Form batter 
into small balls.

You could make St. Patrick’s Day-themed donut holes. Here’s one 
possible way:

What simple dessert could I make St. Patrick’s Day-themed?

Step 4: Deep fry the 
donut holes in oil until 
cooked through.

Step 5: Serve on a 
plate of green donut 
glaze.

Figure 13. Additional personalization. The steps illustrate donut
holes customized to be green for St. Patrick’s day.

Step 1: Grease a 
9x13” baking dish.

Step 2: Mix boiled sweet 
potatoes and milk.

Step 3: Mix in sugar 
and mash.

Step 4: Combine 
brown sugar and 
chopped pecans.

Step 5: Spread into 
the baking dish; bake 
for 25-30 minutes.

Step 6: Remove once 
the top is golden 
brown.

You could make a simple sweet potato casserole for your 
company Thanksgiving potluck. Here’s how: 

What easy dish can I make for my company Thanksgiving 
potluck?

Figure 14. Additional goal suggestion. StackedDiffusion sug-
gests the goal of making a casserole and provides illustrated in-
structions for it.

Step 1: Lightly toast 
the bread to desired 
crispness.

Step 2: Spread a 
generous layer of 
butter on the toast.

Step 3: Sprinkle 
hagelslag (chocolate 
sprinkles) and sugar.

A traditional Dutch breakfast can be simple and delightful. One 
of the most popular is “hagelslag.” Here’s a basic guide:

How can I make a traditional Dutch breakfast?

Figure 15. Additional goal suggestion. The world knowledge of
the LLM allows it to inform the user about hagelslag.

Step 1: In a cooking 
pot, add oat bran and 
coconut milk.

Step 2: Heat your 
mixture on a medium 
flame until it thickens.

Step 3: Sprinkle 
shredded coconut; stir 
until well-combined.

Making coconut oat bran is a simple and healthy recipe. Here's a basic method you can 
follow:

How can I make coconut oat bran?

Step 4: Remove from 
heat, allow to cool 
slightly, then serve.

Figure 16. Additional article generation. Coconut oat bran is
a variant on an existing dish (not found in the training set) that
StackedDiffusion can illustrate.

Step 1: Mix flour and 
sugar in a mug.

Step 2: Add cocoa 
and ground vanilla; stir 
with wet ingredients.

Step 3: Put on a plate 
and microwave until 
done.

Making brownies in a mug is a quick and easy way to enjoy a chocolate treat. Here's a 
simple recipe you can try:

How can I make brownies in a mug?

Step 4: Optionally, 
dust with powdered 
sugar.

Figure 17. Additional article generation. The mug shows the
consistency StackedDiffusion enables.

Step 1: Fill water into 
a pot and heat to a 
rolling boil.

Step 2: Rinse the 
carrots and put them 
in the water.

Step 3: Cook the 
carrots until they are 
done.

Boiling carrots is a simple and nutritious way to prepare them. Here's a basic recipe 
you can use:

How can I make boiled carrots?

Step 4: Drain the 
carrots.

Figure 18. Additional article generation.



Step 1: Beat the 
sugar, lemon zest, and 
shortening.

Step 2: Add warm 
milk and whisk until 
consistency is ideal.

Step 3: Spread the 
frosting on top of the 
cookies.

Adding frosting to lemon drop cookies can make them even more delicious! Here's a 
simple and effective way to do it:

How can I add the icing for lemon drop cookies?

Step 4: Allow the 
frosting to set and 
serve.

Figure 19. Additional article generation.

Step 1: Mix paint 
colors until they match 
the sofa.

Step 2: Brush paint 
onto the affected area.

Step 3: Apply texture 
relief paper to the 
paint, if desired.

Repairing a peeling faux leather sofa can be a challenging task, but with the right 
approach, you can certainly improve its appearance and extend its life. Here's a guide:

How can I repair peeling for a faux leather sofa with a vinyl repair kit?

Step 4: Use a heat 
tool with the paper for 
2 minutes.

Figure 20. Additional article generation outside of recipes.

Step 1: Preheat the 
oven to 350 degrees 
Fahrenheit.

Step 2: Whisk 
together the canned 
pumpkin, milk, vanilla, 
brown sugar, and oil.

Step 3: Sift together 
the dry ingredients in 
another bowl and mix.

Step 4: Add the dry 
ingredients to the wet 
ones a bit at a time.

Step 5: Fill cupcake 
liners two-thirds of the 
way and bake.

Step 6: Transfer to a 
cooling rack and let 
cool before frosting.

To make pumpkin cupcakes, you can follow this simple recipe:

How can I make pumpkin cupcakes?

Figure 21. Example failure case. We note two failure modes.
First, the model is over-consistent, producing a bowl in Step 3 that
looks similar to the bowl in Step 2 when it should be another bowl.
Second, the model appears to consider geometric arrangements as
similar to each other even if the numbers in each differ, leading to
inconsistency between Step 5 and Step 6.

Step 1: Bring a large 
stockpot of water to 
boil.

Step 2: Place a 
steamer basket in the 
stockpot.

Step 3: Add the 
cauliflower florets to 
the steamer basket.

Here are simple instructions for how to steam cauliflower on the 
stove:

How can I steam cauliflower on the stove?

Step 4: Cook for 5-13 
minutes.

Step 5: Serve warm.

Figure 22. Example failure case 2. An additional example dis-
playing over-consistency at the cost of step faithfulness. Step 2
already displays cauliflower in the in the steamer basket, but the
text only describes it being added in Step 3.
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