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7. Benchmark Sets
In our qualitative analysis approach, we adopt benchmark
sets from previous studies [6, 22]. Our benchmark proto-
col includes structured prompts such as ‘an [animalA] and
an [animalB]’, ‘an [animal] with a [color] [object]’, and ‘a
[colorA] [objectA] and a [colorB] [objectB]’, along with
multi-instance prompts. Table 4 provides details on the
benchmark sets and the number of prompts for each set. We
test each prompt with 64 unique seeds, conducting 50 itera-
tions per seed. The testing is performed using Stable Diffu-
sion v1.5 and typically takes about 20 seconds per prompt
on an NVIDIA L4 GPU.

Table 4. Description of benchmark sets and number of prompts
used for qualitative evaluation.

Benchmark Set Template #

Animal-Animal a [animalA] and a [animalB] 66‘a horse and a bird’

Animal-Object
a [animal] and

144a [color][object]
‘a frog and a purple balloon’

Object-Object
a [colorA][objectA] and

66a [colorB][objectB]
‘a black crown and a red car’

Multi-Object
[numberA][animalA] and

30[numberB][animalB]
‘one zebra and two birds’

8. Algorithm
The pseudocode for the CONFORM algorithm is described
in Algorithm 1.

9. Ablation Study
In our ablation study, we conducted targeted experiments
on a limited set of prompts and a smaller number of images
to identify the most effective parameters and techniques for
our final model, guided by CLIP similarity metrics. The
most influential parameters were found to be: incorporat-
ing attention maps from previous iterations, fine-tuning the
temperature parameter in the contrastive loss equation (ref-
erenced in Eq. 3), implementing refinement steps for iter-

Algorithm 1 A Single Denoising Step using CONFORM.

Input: A text prompt P , previous attention maps At+1, a
dictionary of subject and corresponding attribute token
indices T , a timestep t, a set of iterations for refinement
{t1, . . . , tk}, and a pretrained diffusion model ✏✓.
Output: A noised latent zt�1 for the next timestep.

1: , At  ✏✓(zt,P, t)
2: L {} . Pseudo-Labels
3: F {} . Features
4: for si, C 2 T do . Prepare features and labels
5: L L + i . Label attention map
6: F F +At[:, :, si] . Get attention map
7: L L + i . Label prev attention map
8: F F +At+1[:, :, si] . Get prev attention map
9: for cj 2 C do . Attributes of a token get the same labels

10: L L + i . Label attention map
11: F F +At[:, :, cj ] . Get attention map
12: L L + i . Label prev attention map
13: F F +At+1[:, :, cj ] . Get prev attention map
14: end for
15: end for
16: L L(F,L)
17: z0t  zt � ↵t ·rztL
18: if t 2 {t1, . . . , tk} then . If performing iterative refinement

at t
19: zt  z0t
20: Go to Step 1
21: end if
22: zt�1,  ✏✓(z

0
t,P, t)

23: Return zt�1

ative updates of latent before advancing to subsequent iter-
ations, and determining whether to consistently apply opti-
mization throughout all iterations or to stop it at a certain
point.

Using Attention Maps from Previous Iterations. As in-
dicated in Tab. 5, employing attention maps from the pre-
vious iteration positively impacts both CLIP-full and CLIP-
min metrics. The benefits of this technique are also evident
in Fig. 3 (see main paper). While the diffusion process natu-
rally leads to the scattering of attention, our method assists
in maintaining focused attention throughout the iterations,
countering the scattering effect.



Table 5. Average CLIP image-text similarities for ablation study
on the effect of using previous iteration attention maps.

Method CLIP-full CLIP-min

Stable Diffusion 0.33 0.24
w/o Previous Iteration Attention Maps 0.35 0.25
CONFORM 0.36 0.26

Scale Factor, Temperature, Refinement Steps, Maxi-
mum Optimization Steps The temperature parameter (⌧ )
in Eq. 3 (see main paper) is critical for achieving desirable
results and requires precise calibration. We utilized a grid
search (⌧ 2 {0.25, 0.5, 0.75, 1.0}) to identify the optimal
temperature parameter and the number of refinement steps
at specific iterations. Additionally, we determined the ap-
propriate point to cease optimization and the scale factor ↵,
as defined in Eq. 5. The selection was based on achieving
the highest CLIP-full and CLIP-min similarity scores.

Beyond quantitative analysis, we carefully observed how
each parameter influenced the final image output. Values of
⌧ that are too high result in negligible changes, while values
that are too low lead to unwanted artifacts. We determined
⌧ = 0.5 as the optimal setting. Implementing refinement
steps at certain iterations, specifically at i 2 0, 10, 20 (simi-
lar to the approach in [6]), allows the model to make neces-
sary adjustments to the attention maps. However, applying
optimization at every step led to unwanted artifacts in the
output. Consequently, we decided to halt optimization at
i = 25 to avoid these issues. Lastly, we also used scale
factor ↵ = 20 considering the results of the grid search.

10. Additional Qualitative Results
In the remainder of the Supplementary Materials, we pro-
vide additional qualitative comparisons:
• Comparison with the A-Star for the images presented in

[1].
• Additional prompts involving person-person, person-

object, and person-background on SD-based models:
Stable Diffusion [34], Attend & Excite [6], Divide &
Bind [22], and our method applied to the Stable Diffu-
sion model.

• Additional qualitative comparisons for SD-based mod-
els: Stable Diffusion [34], Attend & Excite [6], Divide
& Bind [22], and our method applied to the Stable Diffu-
sion model.

• Additional comparisons between Imagen [37] and our
method applied to the original Imagen model.
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Figure 9. Qualitative comparison of CONFORM with A-Star. We compared the results presented in A-Star [1] paper with our method
on Stable Diffusion.

Figure 10. Qualitative comparison of CONFORM on SD with prompts involving person-person, person-object, and person-
background. Our approach consistently produces images that more accurately reflect the input text prompts, effectively handling both
simple and complex scenarios in the SD model.



Figure 11. Qualitative comparison of CONFORM on SD. Our approach consistently produces images that more accurately reflect the
input text prompts, effectively handling both simple and complex scenarios in the SD model.



Figure 12. Qualitative comparison of CONFORM on SD. Our approach consistently produces images that more accurately reflect the
input text prompts, effectively handling both simple and complex scenarios in the SD model.



Figure 13. Qualitative comparison of CONFORM on SD. Our approach consistently produces images that more accurately reflect the
input text prompts, effectively handling both simple and complex scenarios in the SD model.



Figure 14. Qualitative comparison of CONFORM on SD. Our approach consistently produces images that more accurately reflect the
input text prompts, effectively handling both simple and complex scenarios in the SD model.



Figure 15. Qualitative comparison of CONFORM on SD. Our approach consistently produces images that more accurately reflect the
input text prompts, effectively handling both simple and complex scenarios in the SD model.



Figure 16. Qualitative comparison of CONFORM on SD. Our approach consistently produces images that more accurately reflect the
input text prompts, effectively handling both simple and complex scenarios in the SD model.



Figure 17. Qualitative comparison of CONFORM on SD. Our approach consistently produces images that more accurately reflect the
input text prompts, effectively handling both simple and complex scenarios in the SD model.



Figure 18. Qualitative comparison of CONFORM on SD. Our approach consistently produces images that more accurately reflect the
input text prompts, effectively handling both simple and complex scenarios in the SD model.



Figure 19. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.

Figure 20. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.



Figure 21. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.

Figure 22. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.



Figure 23. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.

Figure 24. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.



Figure 25. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.

Figure 26. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.



Figure 27. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.

Figure 28. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.



Figure 29. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.

Figure 30. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.
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