
Supplementary Material:
Time-, Memory- and Parameter-Efficient Visual Adaptation

Otniel-Bogdan Mercea1, 2* Alexey Gritsenko1 Cordelia Schmid1 Anurag Arnab1†

1Google 2University of Tübingen

In this appendix, we provide further experiments on
large-scale image classification (Sec. A), futher details and
ablation studies of our baselines (Sec. B), detail our hyper-
parameters (Sec. D), and finally, include a more extensive
comparison to prior work on the VTAB benchmark [24]
(Sec. C) which we could not do in the main paper due to
space constraints.

A. Further experiments on large scale image-
classification

Table A1 provides detailed results for iNaturalist
2021/2018, Places365 and ImageNet. We also pro-
vide inference metrics, such as memory utilization and
speed during inference. Similar to the conclusions from
the main paper on iNaturalist2018, our proposed LoSA
is Pareto-optimal on these datasets, as no other method
is both more accurate and more efficient (across multiple
efficiency metrics). Figures A1 and A2 visualise our results
on iNaturalist 2021 and Places365 respectively.

As mentioned in the main paper, we have also included
results for ImageNet in Tab. A1. However, we do not con-
sider ImageNet to be a good dataset for evaluating the per-
formance of adaptation methods, as the performance is satu-
rated, and all methods achieve similar accuracy. The dataset
is likely saturated because it is too similar to the pretrain-
ing dataset [6, 19, 20, 25]. The lowest accuracy achieved
is 88.2 for LST [21], and the highest accuracy is 89.0 for
full-finetuning and our method.

Finally, we observe that for inference, the memory con-
sumption and the speed is very similar across all meth-
ods. As described in the main paper, this happens as the
efficiency metrics during inference are almost entirely in-
fluenced by the size of the backbone and not by the size
of the adaptors, which is relatively very small. Therefore,
the methods that add additional components (e.g. LoSA ,
LST [21], LoRA [8]) behave similarly as the other base-
lines that do not add any additional components (e.g. full
finetuning, BitFit [23]) with respect to the efficiency met-

*Work done during an internship at Google.
†Correspondence to aarnab@google.com.

rics during inference.

B. Further details and ablation studies about
baselines

In this section, provide additional details about the baselines
used in our main paper. In addition, we have released our
code at: https://github.com/google-research/scenic

LoRA [8] We implemented LoRA according to the orig-
inal paper [8] and the official repository. In the original
LoRA paper, the authors only adapted the query- and key-
projections within the transformer block. However, as these
experiments were conducted for natural language tasks, we
performed further ablations of LoRA in Tab. A2 and A3.

Based on our experiments, we found that adapting all
linear projections in the transformer block (i.e. query-, key-
, value- and output-projections, along with the MLP block)
performed the best (Tab. A2). Furthermore, we found using
a LoRA rank of r = 32 to provide a good trade-off between
accuracy and efficiency (Tab. A3). As a result, we used
these settings in all of our experiments in the main paper.

Finally, we note that during inference, it is possible to
absorb the learned LoRA parameters back into the original
weights of the transformer block [8]. This means that the
inference speed and GFLOPs remains unchanged compared
to the backbone. However, we did not implement this in our
experiments.

BitFit [23] For BitFit, we implement it so that it can train
every single bias in the whole network. This is in line with
the original paper [23] which showed that using all the bi-
ases in the network provides the best accuracy.

Prompt tuning [9] We implemented visual prompt-
tuning, according to the authors’ implementation and pa-
per [9]. We have used the ”Deep” prompt-tuning, which
means that we have learnable tokens at multiple layers in
the architecture, instead of only at the first layer as in ”Shal-
low” prompt-tuning.

1

https://github.com/google-research/scenic/tree/main/scenic/projects/losa
https://github.com/microsoft/LoRA
https://github.com/kmnp/vpt


Figure A1. Comparison of trade-offs of accuracy with respect to learned parameters, training memory, inference GFLOPs and training
speed. Our approach, LoSA, is consistently on the Pareto frontier (denoted by shaded yellow circles), as there is no method that is both
more accurate and more efficient than it, across multiple efficiency metrics. Results are on the iNaturalist2021 dataset, using a ViT-g
backbone with 1 billion frozen parameters.

Figure A2. Comparison of trade-offs of accuracy with respect to learned parameters, training memory, inference GFLOPs and training
speed. Our approach, LoSA, is consistently on the Pareto frontier (denoted by shaded yellow circles), as there is no method that is both
more accurate and more efficient than it, across multiple efficiency metrics. Results are on the Places365 dataset, using a ViT-g backbone
with 1 billion frozen parameters.

We found that prompt-tuning is very sensitive to the
number of prompts inserted at each layer [8, 9, 13]. And
in some cases, can even perform worse than linear probing.
Therefore, in our experiments, we first did an ablation study
to determine a configuration that achieved good accuracy-
efficiency trade-offs, as shown in Tab. A4, and used it for fu-
ture experiments. Concretely, we used 16 learnable prompts
per layer, for the first 24 layers of our ViT-g backbone.

LST [21] Our implementation is based on the public code
and paper [21]. The paper uses a transformer model as the
parallel network. Following the original authors, we used a
linear projection to reduce the dimensionality of the activa-
tions from the backbone, to the hidden dimension, d, of the
parallel network. Following the authors, we used d = 48.

ST-Adapter [17] We have followed the public implemen-
tation. and paper [17]. In the paper, the authors provide
multiple ways of inserting the ST-Adapter into the back-
bone architecture. We used the variant which achieves the
best accuracy, namly inserting an ST-Adapter module be-
fore and after the Multihead Self-Attention (MHSA) in each

transformer block. Following the paper, our convolutional
kernel size is 3x3x3, and the hidden dimension of the ST-
Adapter is 768.

C. VTAB
Table A5 compares to additional methods on the VTAB-1K
benchmark (in the main paper, we presented fewer methods
due to space constraints). Our LoSA method still achieves
superior accuracy-efficiency trade-offs compared to prior
work.

D. Implementation details
In this section we provide more details for the hyperpa-
rameters that we have used for our methods on the large
scale datasets (image and video domains). Table A6 shows
that we use the same hyperparameters across different im-
age datasets, and achieve strong results across all of them.
Table A7 presents our hyperparameters for video classifica-
tion.

Our training hyperparameters for image classification
are based on those from [19, 25], whilst our training hy-

https://github.com/ylsung/Ladder-Side-Tuning/blob/main/VL-T5/src/my_transformers/modeling_bart.py
https://github.com/linziyi96/st-adapter
https://github.com/linziyi96/st-adapter


Method Update ↓
Param (M)

Memory Usage (GB) Speed img/sec GFlops ↓ Acc ↑
Places365

Acc ↑
iNaturalist2018

Acc ↑
iNaturalist2021

Acc ↑
ImageNetTrain ↓ Inference ↓ Train ↑ Inference↑

Full fine-tuning 1000 8.71 4.01 17.6 77.3 267.4 61.1 79.8 82.5 89.0

Linear probing 0 4.09 4.01 75.9 77.6 267.4 57.8 73.3 70.1 88.4
LST [21] 27 4.77 4.11 42.5 66.4 274.9 59.5 75.0 76.0 88.2
Finetune last layer 50 4.30 4.01 69.4 77.5 267.4 59.5 77.4 79.2 88.8
Prompt Tuning [9] 0.6 6.00 4.04 11.0 27.9 571.8 59.2 77.5 76.8 88.3
Finetune last 2 layers 75 4.41 4.01 64.4 77.6 267.4 59.7 78.1 79.8 88.8
Bitfit [23] 0.7 4.69 4.01 34.2 77.5 267.4 58.6 78.6 76.4 88.4
Finetune only mlp [22] 700 7.39 4.01 23.1 77.7 267.4 60.8 79.3 81.7 88.9
Finetune only attention [22] 320 5.96 4.01 25.7 77.4 267.4 60.9 79.7 81.9 88.8
LoRA [8] 18 4.86 4.08 27.5 64.2 272.2 61.5 80.9 83.3 88.6

Ours (LoSA) 4.8 4.19 4.07 64.7 73.6 269.4 61.3 81.3 83.8 89.0

Table A1. Results on iNaturalist2018/2021, Places365 and ImageNet. We used a Vit-g backbone with 1 billion paramaeters for all exper-
iments. The number of trainable parameters does not contain the classifier weights, which means that the number of updated parameters
is therefore constant across all datasets. The speed, memory usage and GFLOPs are barely affected by the number of classes, and we
report these metrics for iNaturalist 2018. We used data from this table for the Figures 1 and 4 of the main paper, and Fig. A1 and A2 of
this appendix. Note that for LoRA [8], it is possible to absorb the learned weights into the frozen weights after training, to ensure that
the inference time and FLOPs does not change at all compared to full finetuning which does not add any parameters to the model [8].
However, we have not implemented this. Note that although we average training- and inference-time over 50 batches, there is still some
random variation in the timing.

Q K V Out MLP Params (M) GFLOPs Time (img/sec) Accuracy

✓ 3.7 268.4 30.5 77.7
✓ ✓ 7.4 269.4 28.9 77.7
✓ ✓ ✓ 11.1 270.3 27.3 79.7
✓ ✓ ✓ ✓ 14.8 271.2 26.5 79.9
✓ ✓ ✓ ✓ ✓ 18.5 272.2 27.5 80.9

Table A2. Ablation on which components of the transformer block
to apply LoRA to, on the iNaturalist2018 dataset, using a Vit-g
backbone. Our choice of using LoRA on all components provides
the best accuracy.

Rank, r Params (M) GFLOPs Time (img/sec) Accuracy

1 0.58 267.7 26.8 79.2
4 2.31 268.1 27.7 79.0
8 4.62 268.7 27.8 79.9
16 9.24 269.8 27.7 80.6
32 18.47 272.2 27.5 80.9
64 36.95 276.8 27.3 81.1

128 73.89 286.1 26.7 80.5
256 147.79 304.8 25.0 79.8

Table A3. Ablating the LoRA rank on the iNaturalist2018 dataset,
using Vit-g backbone. We consider our choice of using r = 32 a
good trade-off.

perparameters for video classification are based on those
from [1]. Overall, we did not change hyperparametrers of
our model (such as the rank r of LoSA ) between images
and video.

We used synchronous SGD with distributed data-parallel
training. For images, we used a local batch size of 16. For
video, our local batch size was 1 for all experiments in the
main paper.

Number of prompts, P Number of initial layers, L Params (103) GFLOPs Accuracy

0 0 0 267.4 73.3

1 1 1 268.5 73.4
1 4 6 271.6 72.9
1 8 11 275.3 72.7
1 16 23 281.4 72.8
1 24 34 285.9 72.4
4 1 6 271.7 72.5
4 4 23 284.0 72.6
4 8 45 298.9 70.9
4 16 90 323.6 72.4
4 24 135 341.6 75.4
8 1 11 276.0 72.7
8 4 45 300.6 71.4
8 8 90 330.5 70.5
8 16 180 380.5 73.8
8 24 270 417.0 77.1
16 1 23 284.6 72.3
16 4 90 334.0 70.6
16 8 180 394.5 70.8
16 16 361 496.4 75.1
16 24 541 571.8 77.5
24 1 34 293.3 72.4
24 4 135 376.6 70.1
24 8 270 459.2 73.0
24 16 541 615.0 74.7
24 24 811 731.6 78.4

Table A4. Ablating prompt tuning on the iNaturalist2018 dataset
with a Vit-g backbone. Prompt tuning is sensitive to the number
of learned prompts, P , and the number of initial layers, L, which
these prompts are added to. (Note that prompts are not added only
to the input, but the initial L layers in [9]). P = 0, L = 0, cor-
responds to a linear probing baseline. Based on these results, we
used P = 16, L = 24.

When we report the memory consumption for training or
inference (Fig. 1 and 4, Tabs. 2, 3, 4, 5 of the main paper,
and Fig. A1 and A2 and Tab. A1 of the appendix, we report
the memory usage with a local batch size of 1. The reason
for that is that it removes the effect of the batch size (which
is a training hyperparameter), and it also has a clear intepre-



Natural Specialized Structured

Pa
ra

m
↓

(1
06

)

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
10

2

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

A
vg

N
at

ur
al

A
vg

Sp
ec

ia
liz

ed

A
vg

St
ru

ct
ur

ed

A
ve

ra
ge

Traditional Finetuning
Full[9, 11] 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 75.9 83.4 47.6 68.9
Linear[9, 11] 0 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 69.1 77.1 26.9 57.6
Efficient adaptation methods
BitFit[12, 23] 0.10 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 73.3 78.3 44.1 65.2
VPT-Shal.[9, 12] 0.06 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 76.8 79.7 47.0 67.8
VPT-Deep[9, 11] 0.53 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 78.5 82.4 55.0 72.0
RS-Bypass. [10] 0.42 64.5 88.8 73.2 99.4 90.6 63.5 57.2 85.5 95.2 82.4 75.2 70.4 61.0 40.2 66.8 79.2 52.6 26.0 49.3 76.7 84.6 55.7 72.3
Express [4] 0.2* 78.0 89.6 68.8 98.7 88.9 81.9 51.9 84.8 96.2 80.9 74.2 66.5 60.4 46.5 77.6 78.0 49.5 26.1 35.3 79.7 84.0 55.0 72.9
TOAST [18] 14.0 82.1 90.5 70.5 98.7 89.7 71.9 53.3 84.3 95.5 85.5 74.2 75.4 60.8 44.7 77.5 73.9 47.5 24.5 33.7 79.5 84.9 54.8 73.1
Adapter [7, 11] 0.16 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 79.0 84.1 58.5 73.9
LoRA[8, 11] 0.29 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 79.5 84.6 59.8 74.5
AdaptFormer[3, 11] 0.16 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 80.6 84.9 58.8 74.7
NOAH [11, 26] 0.36 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 80.3 84.9 61.3 75.5
FacT-TK [12] 0.06 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 80.6 85.3 60.7 75.6
SSF [14] 0.24 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 81.6 86.6 59.0 75.7
Convpassattn [11] 0.16 71.8 90.7 72.0 99.1 91.0 89.9 54.2 85.2 95.6 83.4 74.8 79.9 67.0 50.3 79.9 84.3 53.2 34.8 43.0 81.2 84.8 61.6 75.8
RepAdapter [16] 0.22 72.4 91.6 71.0 99.2 91.4 90.7 55.1 85.3 95.9 84.6 75.9 82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0 81.6 85.4 61.2 76.1
RS [10] 0.55 75.2 92.7 71.9 99.3 91.9 86.7 58.5 86.7 95.6 85.0 74.6 80.2 63.6 50.6 80.2 85.4 55.7 31.9 42.0 82.3 85.5 61.2 76.3
Convpass [11] 0.33 72.3 91.2 72.2 99.2 90.9 91.3 54.9 84.2 96.1 85.3 75.6 82.3 67.9 51.3 80.0 85.9 53.1 36.4 44.4 81.7 85.3 62.7 76.6
HST [15] 0.78 76.7 94.1 74.8 99.6 91.1 91.2 52.3 87.1 96.3 88.6 76.5 85.4 63.7 52.9 81.7 87.2 56.8 35.8 52.1 82.8 87.1 64.5 78.1
LoSA , r = 16 0.19 82.5 92.8 76.1 99.7 90.5 82.0 55.8 86.6 97.1 87.0 76.7 81.5 62.3 48.6 82.1 94.2 61.7 47.9 45.6 82.8 86.9 65.5 78.4
LoSA , r = 8 0.10 82.2 92.7 76.7 99.7 90.7 81.0 55.4 86.9 97.1 87.4 76.5 79.9 61.8 48.6 82.4 92.3 61.1 48.7 47.3 82.6 87.0 65.3 78.3
LoSA , r = 4 0.05 82.7 93.0 76.2 99.7 89.8 80.0 56.1 86.3 96.7 86.7 76.3 78.8 61.4 48.0 82.6 91.7 58.4 46.9 47.6 82.5 86.5 64.4 77.8

Table A5. Comparison to state-of-the-art parameter-efficient finetuning methods on VTAB-1K [24]. Following standard practice, the final
“Average” is the average of three preceding groupwise averages. Parameters denotes the number of learnable parameters excluding the final
classification layer, as the number of parameters in this final layer depend on the number of classes, which varies between 2 and 397. Each
variant of our model, which we obtain by varying the rank r of our Low-rank Mixer Block, achieves better accuracy-parameter trade-offs
than previous approaches, when using the same ViT-B backbone. Best results are bolded, and second-best underlined. * denotes that we
estimated the number of learnable parameters in Express [4] based on the hyperparameters presented in the paper, as the authors did not
explicitly state the number of learned parameters in their paper.

Hyperparameter iNaturalist2018 iNaturalist2021 Places365 ImageNet

Optimiser Momentum, λ = 0.9
Batch size 512
Learning rate scheduler cosine
Linear warmup steps 500
Base learning rate 0.05
Number of training steps 20 000
Rank, r 64
Input resolution 224

Table A6. LoSA hyperparameters for large-scale image classifica-
tion datasets.

tation: it represents the minimum possible memory that we
require during data-parallel training.

When reporting the training and inference speeds, we av-
erage the runtime over 50 batches.

We implemented our method and baselines using the
Scenic library [5] and JAX [2].

Hyperparameter Kinetics 400

Optimiser momentum, λ = 0.9
Batch size 64
Learning rate scheduler cosine
Linear warmup epochs 2.5
Base learning rate 0.04
Epochs 30
Rank, r 64
Input resolution 224

Table A7. LoSA hyperparameters for video classification task.

References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen

Sun, Mario Lučić, and Cordelia Schmid. ViViT: A Video
Vision Transformer. In ICCV, 2021. 3

[2] James Bradbury, Roy Frostig, Peter Hawkins,



Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. 4

[3] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer: Adapt-
ing vision transformers for scalable visual recognition. In
NeurIPS, 2022. 4

[4] Rajshekhar Das, Yonatan Dukler, Avinash Ravichandran,
and Ashwin Swaminathan. Learning expressive prompting
with residuals for vision transformers. In CVPR, 2023. 4

[5] Mostafa Dehghani, Alexey Gritsenko, Anurag Arnab,
Matthias Minderer, and Yi Tay. Scenic: A JAX library
for computer vision research and beyond. arXiv preprint
arXiv:2110.11403, 2021. 4

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, 2009. 1

[7] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In ICML, 2019. 4

[8] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. In
ICLR, 2022. 1, 2, 3, 4

[9] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In ECCV, 2022. 1, 2, 3, 4

[10] Zeyinzi Jiang, Chaojie Mao, Ziyuan Huang, Ao Ma, Yiliang
Lv, Yujun Shen, Deli Zhao, and Jingren Zhou. Res-tuning:
A flexible and efficient tuning paradigm via unbinding tuner
from backbone. In NeurIPS, 2023. 4

[11] Shibo Jie and Zhi-Hong Deng. Convolutional bypasses
are better vision transformer adapters. In arXiv preprint
arXiv:2207.07039, 2022. 4

[12] Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for
lightweight adaptation on vision transformer. In AAAI, 2023.
4

[13] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. In ACL, 2021. 2

[14] Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao
Wang. Scaling & shifting your features: A new baseline for
efficient model tuning. In NeurIPS, 2022. 4

[15] Weifeng Lin, Ziheng Wu, Jiayu Chen, Wentao Yang,
Mingxin Huang, Jun Huang, and Lianwen Jin. Hierarchi-
cal side-tuning for vision transformers. In arXiv preprint
arXiv:2310.05393, 2023. 4

[16] Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun,
Guannan Jiang, Zhiyu Wang, and Rongrong Ji. Towards ef-
ficient visual adaption via structural re-parameterization. In
arXiv preprint arXiv:2302.08106, 2023. 4

[17] Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hong-
sheng Li. St-adapter: Parameter-efficient image-to-video
transfer learning. In NeurIPS, 2022. 2

[18] Baifeng Shi, Siyu Gai, Trevor Darrell, and Xin Wang. Toast:
Transfer learning via attention steering. In arXiv preprint
arXiv:2305.15542, 2023. 4

[19] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross
Wightman, Jakob Uszkoreit, and Lucas Beyer. How to train
your vit? data, augmentation, and regularization in vision
transformers. TMLR, 2022. 1, 2

[20] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-
nav Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In ICCV, 2017. 1

[21] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Lad-
der side-tuning for parameter and memory efficient transfer
learning. In NeurIPS, 2022. 1, 2, 3

[22] Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Jakob
Verbeek, and Hervé Jégou. Three things everyone should
know about vision transformers. In ECCV, 2022. 3

[23] Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. In arXiv
preprint arXiv:2106.10199, 2021. 1, 3, 4

[24] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. A large-scale study of representation learning
with the visual task adaptation benchmark. In arXiv preprint
arXiv:1910.04867, 2019. 1, 4

[25] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lu-
cas Beyer. Scaling vision transformers. In CVPR, 2022. 1,
2

[26] Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural
prompt search. In arXiv preprint arXiv:2206.04673, 2022.
4


	. Further experiments on large scale image-classification
	. Further details and ablation studies about baselines
	. VTAB
	. Implementation details

