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Supplementary Material

This supplementary material provides additional details on

the following about the proposed MinusFace method:

• Experimental setup and implementation details;

• Further methodological and experimental discussions;

• Further ablation studies;

• Additional image visualization;

• Ethics discussion.

A. Detailed experimental setup

This section provides information about our experimental

setup. We first further introduce the employed datasets and

backbones, then discuss our detailed implementations.

A.1. Datasets

Training datasets. We train our FR models on the widely-

used MS1Mv2 dataset [13], which consists of 5.8M face

images from 85K distinct individuals, mainly celebrities. In

accordance with CVPR guidelines, we provide further ethi-

cal discussion in Sec. E. Additionally, we utilize the smaller

BUPT-BalancedFace dataset [54] (BUPT) for recovery at-

tacks, comprising 1.3M images from 28K identities.

Test datasets. We compare MinusFace and SOTA meth-

ods on 7 datasets. (1) We benchmark on five widely-

used, regular-sized datasets and report results as test ac-

curacy (with a lower bound of 50%): LFW [17], 13K

web-collected images from 5.7K individuals; CALFW [68]

and CPLFW [67], reorganized version of LFW that en-

hances cross-age and cross-pose variations, respectively;

AgeDB [40] and CFP-FP [44], similar in size and varied

in age and pose. Notably, LFW is often viewed as a satu-

rated dataset, where the highest recognition accuracy is an-

ticipated. Conversely, CFP-FP and CPLFW pose greater

challenges to SOTA FR methods due to their increased

pose variations. (2) We extend our study to two large-scale

benchmarks: IJB-B [59] and IJB-C [32], which provide

80K and 150K still images and video frames, respectively.

Results are reported as TPR@FPR(1e-4), i.e., the true posi-

tive rate (TPR) at a specific false positive rate (FPR) of 1e-4.

A.2. Backbones

We employ an adapted ResNet50 model with an improved

residual unit (IR-50) [14] as the FR backbone for both f and

fp. The only modification to the backbone is changing the

input channels of f to 192 to match the number of channels

in x. For the generative model g and the attacker’s recovery

model f−1, we utilize U-Net [42], a popular architecture

for image generation and segmentation, which can be con-

sidered an autoencoder with skip connections. We employ

a full-scale U-Net for f−1 to enhance the attacker’s capa-

bility and a smaller one for g. The latter helps us to reduce

MinusFace’s local storage and inference time.

A.3. Implementation details

Image preprocessing. We preprocess the training and test

datasets using standard methods: We crop faces from the

images and align their positions based on the 5-point land-

marks of the faces (positions of eyes, nose, and lips). To

improve the FR model’s generalization, we apply random

horizontal flips to the training images.

Encoding and decoding mappings. We opt for DCT

and its inverse IDCT as our concrete encoding and decod-

ing mappings. DCT is a popular spatial-frequency trans-

formation first employed by the JPEG compression stan-

dard [52]. It converts a (3, H,W ) spatial image into

(192, H,W ) frequency channels. Specifically, the spatial

image first undergoes an 8-fold up-sampling to obtain a

shape of (3, 8H, 8W ). As DCT later divides H and W by 8,

this makes sure the resulting frequency channels have con-

sistent shapes. Subsequently, each channel of the image is

split into (8, 8)-pixel blocks. DCT turns each block into a

1D array of 64 frequency coefficients and reorganizes all

coefficients from the same frequency across blocks into an

(H,W ) frequency channel, that is spatially correlated to the

original X . This conversion produces 64 frequency chan-

nels from each of the 3 spatial channels. These channels are

then stacked to form the final shape of (192, H,W ). We

further discuss the properties of DCT in Sec. B.1.

Training. Our training involves two stages: First to produce

r, we train the generative model g and the FR model f in an

end-to-end manner. Then, we freeze g and train fp on Xp,

which is generated from the decoding of randomly shuffled

r. For both stages, we train the model from scratch for 24

epochs with a stochastic gradient descent (SGD) optimizer.

We choose 64, 0.9, and 1e-4 for batch size, momentum, and

weight decay, respectively. The training of f, fp starts with

an initial learning rate of 1e-2, which is successively divided

by a factor of 10 at epochs 10, 18, and 22. The learning rate

of g is further halved (i.e., starting at 5e-3) since the gen-

erative model requires a smaller learning rate to facilitate

convergence. We choose the weights for our training objec-

tive as α = 5, β = 1. To help fp generalize on random-

ized representation, we augment the dataset 3 times, similar

to [36], meaning each X generates three Xp from distinct

random shuffling. We apply the same training settings for

SOTAs. For the recovery attacker, we train its model until

convergence using an initial learning rate of 1e-3. Experi-

ments are carried out in parallel on 8 NVIDIA Tesla V100



GPUs with PyTorch 1.10 and CUDA 11. We use the same

random seed for all experiments.

B. Further discussion

B.1. Properties of DCT

DCT is invertible. DCT and IDCT together are invertible

as they, by design, map a spatial image to and from its fre-

quency channels losslessly. Hence, it naturally holds:

d(e(X)) = X. (10)

Importantly, it however does not guarantee

e(d(x)) = x, (11)

unless x is a valid frequency representation that is directly

encoded via DCT from a spatial image X as x = e(X)
(this case satisfies Eq. (6)). In MinusFace, since x′, r are

not encoded via DCT but derived from regeneration and

feature subtraction, they are not frequency representations

of X ′, R′ but rather serve as generic high-dimensional rep-

resentations. Therefore, we can expect

e(d(x′)) ̸= x′, e(d(r)) ̸= r. (12)

This property benefits privacy, as an attacker cannot invert a

plausible r from X ′, R′ or Xp. We previously demonstrated

this in Sec. 4.5.

DCT is homomorphic. DCT is a linear transformation.

Any linear transformation is additively homomorphic by

definition. Hence it satisfies

d(x1 + x2) = d(x1) + d(x2). (13)

DCT is used differently by MinusFace and SOTAs. No-

tably, some SOTA PPFR methods [24, 35, 36, 56] also uti-

lize DCT in their pipelines. Both MinusFace and SOTAs are

likely inspired by [61], which demonstrates that an image

recognition model can perform accurately on DCT compo-

nents, making DCT an ideal choice for lossless transforma-

tion. However, their motivations differ: SOTAs utilize DCT

to exploit specific properties of frequency representations

(the perceptual disparity among frequency channels), which

allows for heuristic channel pruning. On the other hand, Mi-

nusFace employs DCT for its invertible and homomorphic

mapping properties, as well as its high-dimensional redun-

dancy, which helps to produce identity-informative r and

privacy-preserving R′.

DCT is replaceable with other mappings. As discussed

in Sec. 3.3, DCT/IDCT can be replaced by other map-

ping algorithms that satisfy Eq. (3). We present an alterna-

tive option, discrete wavelet transform (DWT), in Sec. C.2.

Nonetheless, we empirically find that DCT offers a better

trade-off between accuracy and privacy.

Method CFP-FP AgeDB CPLFW

IR-18, unprotected 92.31 94.65 89.41

IR-18, MinusFace 90.21 93.25 87.60

CosFace, unprotected 92.89 95.15 89.52

CosFace, MinusFace 89.23 94.77 86.97

Table 4. Compatibility of MinusFace. Combining MinusFace with

different FR backbones (IR-18) or losses (CosFace) also sustains

high accuracy, compared to their unprotected baselines.

B.2. Recovery result of SOTAs

Some prior studies [24, 35, 56, 57] claim that their pro-

posed methods are resistant to recovery attacks. However,

in Fig. 6(b), this paper finds that they can, to some extent,

be recovered. We investigate the cause of these distinct ex-

perimental outcomes. For the attacker, successful recovery

depends on various factors, such as training resources (e.g.,

the volume of training data) and strategy (e.g., choice of

training objective, optimizer, learning rate, and batch size).

In fact, this paper examines a more advanced attacker than

those in SOTAs.

Our attacker exploits a larger training dataset. Among

SOTAs, PPFR-FD and DuetFace employ a recovery model

trained on just ≤100K face images. AdvFace trains its re-

covery model on 500K images. In contrast, our analyzed

attacker can exploit the entire BUPT dataset, which consists

of 1.3M images. The increased data volume can plausibly

enhance the attacker’s capability.

Our attacker employs an improved training strategy.

For recovery, we empirically find that selecting appropriate

learning rates and batch sizes is crucial. DCTDP opts for a

learning rate of 1e-1 and a batch size of 512, which could be

too large for the recovery model to stably converge. In this

paper, we choose a learning rate of 1e-3 and a batch size of

64, which we find facilitate recovery.

Despite the advancement in the attacker’s capability, Mi-

nusFace still effectively prevents the successful recovery of

protected faces. This further demonstrates the robust pro-

tection provided by MinusFace.

C. Further ablation study

C.1. Choice of FR backbones and objectives

As discussed in Sec. 4.7, MinusFace is compatible with

different SOTA FR backbones and training objectives. To

illustrate this, we combine MinusFace with a distinct IR-

18 FR model and CosFace [53] loss, using BUPT as the

training dataset. Table 4 shows the recognition accuracy on

CFP-FP, AgeDB, and CPLFW, comparing MinusFace with

unprotected baselines. MinusFace maintains a stable per-

formance that is close to the unprotected baseline.
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Figure 8. Comparison between DCT and DWT. We replace our

mappings with DWT and its inverse and visualize X ′, R′, sample

channel of r, Xp, and its recovery for DCT and DWT, respectively.

DWT also succeeds in creating an almost blank R′ and visually in-

discernible Xp, illustrating the effectiveness of MinusFace. How-

ever, the attacker can achieve a clearer recovery on DWT, making

DCT a more secure choice.

Method CFP-FP AgeDB CPLFW

MinusFace (default) 90.21 93.25 87.60

DWT 90.47 93.53 87.92

DCT, masking 81.40 88.03 82.82

Table 5. Ablation studies of MinusFace. Replacing DCT with

DWT achieves comparable recognition accuracy. Yet, replacing

shuffling with random masking significantly degrades accuracy.

C.2. Choice of encoding and decoding mappings

To demonstrate a generic pair of encoding and decoding

satisfying Eq. (3) may also serve as our mappings e, d,

We replace DCT/IDCT with an alternative choice: discrete

wavelet transform (DWT). By default, DWT converts the

(3, H,W ) image into a (12, H,W ) representation. We

compare its recognition accuracy, concealment of visual im-

ages, and protection against recovery to default DCT.

Figure 8 demonstrates the outcomes using DWT and its

inverse (IWT) as the mappings, compared with those using

DCT/IDCT, respectively. It can be observed that MinusFace

effectively produces almost blank R′ and visually uninfor-

mative Xp for both DCT and DWT. Table 2 further demon-

strates that replacing DCT with DWT can achieve on-par

recognition accuracy. However, we find that Xp generated

via DWT is less resistant to recovery, as face contours can

still be observed in the recovered image. We attribute this

relative deficiency to two reasons: (1) Xp generated from

DWT is less obfuscated in texture details, as its shuffling

is less randomized, and (2) DWT produces a significantly

smaller random space of 12! (192! as of DCT), which eases

the attacker’s learning of consistent representations.

The results indicate that DCT can indeed be replaced

with other mappings. However, the specific choice of d, e

should also be more carefully considered based on the ex-

perimental context.

(a) Original 𝑿 (b) Masked channels of 𝒙𝒑 (c) Randomly generated 𝑿𝒑

Figure 9. Replacing random shuffling with (b) masking also

results in (c) Xp revealing slightly recognizable features at a

marginal cost to privacy, which aligns with our expectations.

(a) 𝑿 (b) 𝑿𝒑 w/o feature subtraction (c) Recovery

Figure 10. Ablation study of feature subtraction. (b) Xp is directly

produced from the high-dimensional representation of (a) X . It

reveals clear visual features and is easy to (c) be recovered.

C.3. Choice of perturbation on r

In Sec. 3.4, we opt for random channel shuffling as our per-

turbation. We here demonstrate it achieves better privacy

and accuracy trade-off than other options. Specifically, we

generate r as usual yet replace s(r; θ) with random masking

of channels m(r; θ). We produce Xp = d(m(r; θ)), where

θ denotes the random seed. We choose a masking ratio of

25%. Figure 9 (b) shows its process.

As per the derivation in Eq. (8), Xp = d(m(r; θ)) should

also reveal recognizable features of X at marginal costs to

privacy. We observe that the produced Xp in Fig. 9 aligns

with our expectations. However, we find that it suffers from

a downgrade in recognition accuracy, as shown in Tab. 5,

since the features it reveals could be too subtle for FR mod-

els to effectively leverage. In this sense, random channel

shuffling better balances privacy and accuracy.

C.4. Without feature subtraction

We discuss the importance of feature subtraction in achiev-

ing privacy protection. The primary outcome of feature sub-

traction is to create a recognizable r that precisely maps

to a blank R′. By perturbing r, we factually restore iden-

tity features in R′ to produce Xp with minimum privacy

cost. Here, we emphasize the critical role of first achieving

a blank R′.

To ablate feature subtraction, we directly perform ran-

dom channel shuffling on x (i.e., the high-dimensional rep-

resentation of X) to obtain Xp. Figure 10 illustrates the re-

sulting Xp and its recovery, where privacy is completely un-

dermined as Xp contain a wealth of visual features. Recall

that Eq. (8) is based on the premise that d(r) → 0. Without



(a) Ground truth

(b) PPFR-FD

(c) DCT-DP

(d) DuetFace

(e) PartialFace

(f) ProFace

(g) AdvFace

(h) MinusFace

Figure 11. Additional sample images for the protective Xp.

(a) Ground truth

(b) PPFR-FD

(c) DCT-DP

(d) DuetFace

(e) PartialFace

(f) ProFace

(g) AdvFace

(h) MinusFace

Figure 12. Additional sample images for the recovery from Xp.

feature subtraction, this condition would not be satisfied, as

R′ = d(r) would not be blank.

D. Additional example images

To demonstrate the generality of MinusFace, we further

supplement Fig. 6 with additional example images for the

protective representation Xp and its recovery, comparing

MinusFace with SOTAs. Specifically, Fig. 11 illustrates Xp

and Fig. 12 illustrates the recovery.

E. Ethics discussion

Our models primarily utilize the MS1Mv2 dataset, a modi-

fied version of the MS-Celeb-1M (MS1M) dataset provided

by the InsightFace project2, containing celebrity face im-

ages. As personal characteristics such as facial semantics

may be inferred from the dataset, we are obliged to justify

its use per CVPR ethics guidelines. The reasons for using

MS1Mv2 include its essential role in ensuring fair compar-

isons: It is one of the de facto standard training datasets

in face recognition, and is employed by the majority of the

methods [4, 8, 24, 35–37, 50] we compare.

2https://github.com/deepinsight/insightface/
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