
Training Diffusion Models Towards Diverse Image Generation with
Reinforcement Learning

Supplementary Material

A. Discussions on Diversity Reward
We discuss two reward choices in Section 4.1, which are
based on MMD [13] and Gaussian Process mutual informa-
tion [38]. Both of them conclude with a kernel computation
in the deep feature space. We also explore other options to
quantify the diversity of the diffusion model, including one
that is non-differentiable, i.e., the recall reward rrecall

D .

Recall Reward As proposed in [20], Recall directly mea-
sures the coverage of the generative distribution Pg . Intu-
itively, optimizing the recall will encourage the diffusion
model to generate images that have a larger coverage. Thus,
we adopt Recall as another diversity reward for RL fine-
tuning. Specifically, given Zg and Zr, we define the recall
reward can be formulated as,

 r^{\text {recall}}_D(\xg ;\xr , \phi)=\text {recall}(\zg , \zr)=\frac {1}{|\zr |} \sum _{n} l(Z_r^n, \zg),

(21)
where l(Zn

r ,Zg) is a binary function that returns 1 if Zn
r

falls in any k-nearest neighbors spanned by Zg. It can be
described as,

 \resizebox {0.99\linewidth }{!}{ l(Z_r^n, \zg) = \left \{ \begin {aligned} & 1,\text {if} ~~||Z_r^n - Z_g^m||_2 < ||Z_g^m < NN_k(Z_g^m)||_2, ~\exists Z_g^m \in \zg \\ & 0, \text {otherwise}. \end {aligned} \right .}

(22)

where NNk(Z
m
g) returns the k-th nearest neighbor of Zm

g .
Intuitively, rrecall

D enlarges the NN-manifold’s coverage,
eventually enriching the generated images’ diversity.

B. Reward Evaluation Experiments
In this section, we provide more details about the post-
sampling selection experiment, which is used for evaluating
the effectiveness of proposed Diversity Reward.

Table 4. More results for Reward Evaluation Experiments.

Method Recall Precision FID

Baseline 40.22 85.77 8.10

Recall (max) 44.07 83.41 7.20
MMD (max) 47.66 83.26 6.22
GP-MI (max) 45.31 84.14 6.81

Recall(min) 36.12 87.53 9.22
MMD (min) 27.69 92.39 14.94
GP-MI (min) 31.24 88.26 10.32

B.1. More Details on Settings

We adopt the implementation in https://github.
com/openai/guided-diffusion as the pre-trained
class-conditional diffusion model. Specifically, with guid-
ance scale s = 4.0, we sample 100K images with O = 10
images as a basic set that are sampled from the same class.
For each basic set, we select a subset with M = 5 images,
thus we evaluate

(
10
5

)
= 252 subsets’ reward values, and se-

lect both the one with the maximum Diversity Reward and
the one with the minimum reward value. By conducting
this process by 100K/10 = 10K times, we construct one
50K set selected with the maximum reward criterion, and
another 50K set with the minimum reward criterion. As for
the reward function. As for the reward function, we test all
three designs of Diversity Reward.

B.2. More Experimental results

We provide more experimental results along with the Re-
call reward in Table 4. All the proposed rewards can help
select diverse subsets, as indicated by the Recall and FID
values. Besides, we also provide visualizations in Figure 7
and Figure 8, where visually diverse & similar subsets can
be selected with the proposed reward functions.

C. RL Fine-tuning for class-conditional diffu-
sion models

C.1. ImageNet Experiments

Implementation Details. We also adopt the implementa-
tion in https://github.com/openai/guided-
diffusion as the pre-trained class-conditional diffusion
model. For LoRA fine-tuning [15], we add trainable LoRA
weights to all the attention layers in both the diffusion
model and the guided classifier with rank R = 4. We
adopt the InceptionV3 [35] as ϕ in the Diversity Reward.
For RL tuning, we adopt the implementation in https:
//github.com/kvablack/ddpo-pytorch, and set
the learning rate to 0.0002, and set M = 5, which is also
adopted as both the sampling batch size. We sample 16
batches before the policy gradient update. We conduct 1
epoch of policy gradient update after sampling images for
reward computation, and we set the total number of epochs
to 150. We adopt the same hyperparameters for all three
designs of Diversity Reward

More Results. We provide results using all of the pro-
posed Diversity Reward, including the non-differentiable

https://github.com/openai/guided-diffusion
https://github.com/openai/guided-diffusion
https://github.com/openai/guided-diffusion
https://github.com/openai/guided-diffusion
https://github.com/kvablack/ddpo-pytorch
https://github.com/kvablack/ddpo-pytorch

Recall reward, in Table 5. We also provide visualizations
in Figure Figs. 9 to 13.

C.2. CIFAR Experiments

Following [27], we adopt the implementation in
DDPM [14] as the pre-trained CIFAR diffusion model. We
apply LoRA to attention layers with R = 4. We also adopt
the InceptionV3 [35] as ϕ in the Diversity Reward. For RL
set the learning rate to 0.0001, and set M = 5, which is
also adopted as both the sampling batch size. We sample
16 batches before the policy gradient update. We conduct 1
epoch of policy gradient update after sampling images for
reward computation, and we set the total number of epochs
to 100. We adopt the same hyperparameters for all three
designs of Diversity Reward

D. RL Fine-tuning for StableDiffusion
Implementation Details. We utilize the StableDiffusion
v1-4 checkpoint as in https://huggingface.co/
CompVis/stable- diffusion. For LoRA fine-
tuning [15], we add trainable LoRA weights to all the at-
tention layers in both the diffusion model and the guided
classifier with rank R = 4. We adopt the visual encoder of
CLIP-B/16 [28] as ϕ in the Diversity Reward. For RL tun-
ing, we adopt the implementation in https://github.
com/kvablack/ddpo-pytorch, and set the learning
rate to 0.0001, and set M = 6, which is also adopted as
both the sampling batch size. We sample 4 batches before
the policy gradient update. We conduct 1 epoch of policy
gradient update after sampling images for reward computa-
tion, and we set the total number of epochs to 80. We adopt

Table 5. More RL Fine-tuning Results on ImageNet-128x128 with
different rewards.

Method Recall Precision FID

Baseline s = 4.0 36.15 82.96 24.49
MMD 47.66 83.26 23.42
GP-MI 45.31 81.72 23.81
Recall 42.13 81.63 24.05

Baseline s = 3.0 40.35 82.10 23.00
MMD 49.31 81.26 22.08
GP-MI 46.31 81.74 22.31
Recall 45.23 82.01 22.49

Baseline s = 2.0 45.95 79.20 21.19
MMD 49.30 78.82 20.48
GP-MI 47.83 79.05 20.95
Recall 46.12 79.18 21.03

Baseline s = 1.0 55.10 74.16 19.86
MMD 59.63 74.84 19.19
GP-MI 56.13 73.52 19.49
Recall 56.01 74.01 19.63

the same hyperparameters for all three designs of Diversity
Reward

More Visualizations. We provide more visualization re-
sults of unbiased image generation in Figure Figs. 14 to 18.

E. Ablation Experiments
We adopt the all the implementation and hyperparameters in
Section C.1, with the different number of reference images
N and the number of images for reward computation M .

https://huggingface.co/CompVis/stable-diffusion
https://huggingface.co/CompVis/stable-diffusion
https://github.com/kvablack/ddpo-pytorch
https://github.com/kvablack/ddpo-pytorch

(a) Generated images (b) Diverse reference images

(c) Subsets Selected with rGP-MI
D (d) Subsets Selected with rMMD

D (e) Subsets Selected with rrecall
D

Figure 7. Illustration of the post-sampling experiments to show the effectiveness of our reward functions on class 761, ’Remote Control’.

(a) Generated images (b) Diverse reference images

(c) Subsets Selected with rGP-MI
D (d) Subsets Selected with rMMD

D (e) Subsets Selected with rrecall
D

Figure 8. Illustration of the post-sampling experiments to show the effectiveness of our reward functions on class 434, ’Bath Towel’.

(a) Baseline

(b) Reference Images Xr

(c) RL Fine-tuning with GP-MI Diversity Reward

(d) RL Fine-tuning with MMD Diversity Reward

Figure 9. RL fine-tuning results with different Diversity Reward on ImageNet (s = 4.0) for class 31, ’Tree Frog’.

(a) Baseline

(b) Reference Images Xr

(c) RL Fine-tuning with GP-MI Diversity Reward

(d) RL Fine-tuning with MMD Diversity Reward

Figure 10. RL fine-tuning results with different Diversity Reward on ImageNet (s = 4.0) for class 46, ’Green Lizard’.

(a) Baseline

(b) Reference Images Xr

(c) RL Fine-tuning with GP-MI Diversity Reward

(d) RL Fine-tuning with MMD Diversity Reward

Figure 11. RL fine-tuning results with different Diversity Reward on ImageNet (s = 4.0) for class 0, ’Tench’.

(a) Baseline

(b) Reference Images Xr

(c) RL Fine-tuning with GP-MI Diversity Reward

(d) RL Fine-tuning with MMD Diversity Reward

Figure 12. RL fine-tuning results with different Diversity Reward on ImageNet (s = 4.0) for class 3, ’Tiger Shark’.

(a) Baseline

(b) Reference Images Xr

(c) RL Fine-tuning with GP-MI Diversity Reward

(d) RL Fine-tuning with MMD Diversity Reward

Figure 13. RL fine-tuning results with different Diversity Reward on ImageNet (s = 4.0) for class 11, ’Goldfinch’.

(a) w/ ’Eyeglasses’

(b) w/o ’Eyeglasses’

(c) Reference images from CelebA.

Figure 14. RL fine-tuning results for StableDiffusion on unbiased face generation for attribute, ’Eyeglasses’.

(a) ’Male’

(b) ’Female’

(c) Reference images from CelebA.

Figure 15. RL fine-tuning results for StableDiffusion on unbiased face generation for attribute, ’Male’.

(a) ’Young’

(b) ’Old’

(c) Reference images from CelebA.

Figure 16. RL fine-tuning results for StableDiffusion on unbiased face generation for attribute, ’Young’.

(a) w/ ’Smiling’

(b) w/o ’Smiling’

(c) Reference images from CelebA.

Figure 17. RL fine-tuning results for StableDiffusion on unbiased face generation for attribute, ’Smiling’.

(a) w/ ’Pale Skin’

(b) w/o ’Pale Skin’

(c) Reference images from CelebA.

Figure 18. RL fine-tuning results for StableDiffusion on unbiased face generation for attribute, ’Pale Skin’.

