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This supplementary material extends the results pre-
sented in the main manuscript with additional visualizations
(Section 1) and detailed experiment results (Section 2).

1. Visualizations
Intuitive example of multiscale log-density estimation
To provide more intuition about our neural log-density ap-
proximation, in Figure 1 we present a toy example that ex-
tends Figure 2 from the main manuscript. In Figure 1b,
we plot our log-density approximation as a trajectory across
a range of noise scales σ, for each normal and anomalous
sample. Our log-density estimation separates normal and
anomalous data well across a wide range of noise scales σ.
We show the log-density estimation in Figure 1c.

Consistency of the anomaly score across different videos
In Figures 2 and 3, we illustrate the trajectories of
MULDE’s anomaly score across different videos of the
same scene, taken from the ShanghaiTech data set. The
levels of the anomaly score for normal fragments of differ-
ent videos are consistent, as are the levels of the score for
anomalous fragments. The regularized MULDE exhibits
better discrimination between normal and anomalous be-
havior than MULDEβ=0 without regularization.

2. Additional Results
In this section, we complement the results presented in the
main manuscript for the frame-centric and object-centric
setup. Furthermore, we provide further details on the choice
of σ, the selection of L, and alternatives to the GMM fitting.

2.1. Frame-centric

In Table 1, we extend Table 2 of the main manuscript to
include the less recent frame-centric VAD methods. The re-
sults of the competing methods were reproduced after the
original publications, except for MSMA [13] which we re-
implemented for processing videos, and AccI-VAD [17],
which we adapted to frame-centric operation. Our method,
MSMA, and AccI-VAD used the Hiera-L [18] features.

Method ShanghaiTech UCF-Crime UBnormal

Micro Macro Micro Macro Micro Macro

MNAD-Recon. [14] 70.5 - - - - -
Mem-AE. [8] 71.2 - - - - -
Frame-Pred. [11] 72.8 - - - - -
ClusterAE [4] 73.3 - - - - -
AMMCN [3] 73.7 - - - - -
MPN [12] 73.8 - - - - -
DLAN-AC [23] 74.7 - - - - -
BMAN [10] 76.2 - - - - -
CT-D2GAN [5] 77.7 - - - - -
CAC [21] 79.3 - - - - -
Scene-Aware [19] 74.7 - 72.7 - - -
BODS [20] - - 68.3 - - -
GODS [20] - - 70.5 - - -
GCL [24] - - 74.2 - - -
UBnormal [1] - - - - 68.5 80.3
FPDM [22] 78.6 - 74.7 - 62.7 -
AccI-VADGMM* [17] 76.2 82.9 60.3 84.5 66.8 83.2
AccI-VADkNN* [17] 71.9 83.1 53.0 82.7 65.2 82.5
MSMA* [13] 76.7 84.2 64.5 83.4 70.3 85.1
MULDEβ=0(ours) 78.4 86.0 75.9 84.8 71.3 86.0
MULDE(ours) 81.3 85.9 78.5 84.9 72.8 85.5

Table 1. Frame-centric results. Frame-level AUC-ROC (%) com-
parison (best marked bold, second best underlined). *imple-
mented by us.

MULDE surpasses the baselines on all three data sets in
terms of both the micro and the macro metric.

The choice of feature extractors In Table 2, we com-
pare the performance of MULDE used with different video
feature extractors in frame-centric VAD. For reference, the
results reported in the main manuscript were obtained with
Hiera-L [18]. We observe, that Hiera-H outperforms Hiera-
L in certain experiments, but runs considerably slower.
Hiera-B is the fastest feature extractor, but produces less
discriminative features than Hiera-L and Hiera-H. Conse-
quently, we opted for Hiera-L due to its favorable tradeoff
between computation time and accuracy.

Comparing the micro performance attained by MULDE
with I3D features (71.3%, bottom row of Table 2) to the re-



(a) Example dataset: Normal features and anomalous features.
(b) AUC-ROC across multiple noise-scales σ based on the negative log prob-
ability fθ . The normal and anomalous samples are well separable.

fθ(·, σ = 0.001) fθ(·, σ = 0.1) fθ(·, σ = 0.5) fθ(·, σ = 1.0)

(c) The log-density of normal training features is estimated with fθ across multiple σ. MULDE leverages fθ as a strong anomaly indicator.

Figure 1. The intuition behind the use of log-density estimation for anomaly detection. (a) Normal features, sampled from a mixture of
four Gaussians, are shown in blue, while anomalous features are shown in red. (b) compares the values of fθ for features from the normal
and anomalous samples. Each graph shows the log-density at multiple noise scales for a single sample. Our anomaly indicator fθ is well
suited to separate anomalies from normal data. (c) shows the log-density approximations across noise scales.

Dataset Features
Micro Macro

MULDE MSMA* AccI-VAD* MULDE MSMA* AccI-VAD*

β0 β0.01 β0.1 β1 GMM kNN β0 β0.01 β0.1 β1 GMM kNN

ShanghaiTech Hiera-B 72.1 73.4 73.1 73.7 71.5 67.9 68.2 83.1 83.6 82.7 81.9 79.8 80.6 79.0
ShanghaiTech Hiera-L 78.4 80.7 81.3 81.4 76.7 76.2 71.9 86.0 84.9 85.9 84.5 84.2 82.9 83.1
ShanghaiTech Hiera-H 79.4 79.8 79.9 81.7 77.4 74.7 72.7 88.3 87.0 87.6 86.8 86.4 86.0 83.5

UBnormal Hiera-B 70.2 71.8 71.6 72.4 70.7 66.0 63.1 84.0 84.1 84.1 83.7 85.4 83.6 81.9
UBnormal Hiera-L 71.3 72.9 72.8 72.5 70.3 66.8 65.2 86.0 85.2 85.5 84.7 85.1 83.2 82.5
UBnormal Hiera-H 70.5 72.7 72.7 72.8 71.2 67.7 63.0 86.9 87.1 87.1 86.3 86.9 85.7 84.5

UCF-Crime Hiera-B 74.2 72.2 71.9 72.4 69.2 69.4 68.1 85.1 85.6 85.2 84.6 83.5 85.1 84.0
UCF-Crime Hiera-L 75.9 76.6 78.5 77.2 64.5 60.3 53.0 84.8 84.9 84.9 85.5 83.4 84.5 82.7
UCF-Crime Hiera-H 74.8 76.7 75.0 74.9 71.4 60.4 57.3 87.4 85.4 85.0 85.0 86.7 84.6 82.7
UCF-Crime I3D 67.6 70.8 69.9 71.3 68.2 63.5 64.2 87.6 87.5 87.3 86.5 87.1 87.6 87.5

Table 2. Frame-level AUC-ROC (%) comparison. For each input feature representation Hiera-B(ase), Hiera-L(arge), Hiera-H(uge), and
I3D, we mark the best scores bold and underline the second-best. *adapted from image-based anomaly detection (MSMA) and object-
centric VAD (AccI-VAD) to frame-centric VAD.
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Figure 2. The value of MULDE’s anomaly score computed for each frame of the test scene 02 of the ShanghaiTech data set (videos
02 0128, 02 0161, and 02 0164) and the resulting micro AUC score. MULDE with regularization has an advantage (+3.3%) over the
non-regularized MULDEβ=0.
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Figure 3. MULDE’s anomaly score computed for each frame of the test scene 04 of the ShanghaiTech data set (videos 04 0001, 04 0003,
etc.) and the resulting micro AUC score. MULDE with regularization outperforms the non-regularized MULDE by 3 percent points.

sults of BODS (68.3%) and GODS (70.5%, Table 1), which
both also use I3D features, we see that MULDE is a fa-
vorable anomaly detector. In particular, this shows that our
approach is truly feature-agnostic and works well with any
input feature representation.

2.2. Object-centric

In the object-centric experiments, reported in Table 1 of the
main manuscript, we used MULDE in combination with the
feature extraction pipeline proposed by Reiss and Hoshen
[17]. It detects objects in each video frame and extracts
deep, velocity, and human pose features for each detected
object, as detailed in the manuscript. Here, we complement

these results with the performance attained by MULDE,
MSMA [13], and AccI-VAD [17] using the pose (P), deep
(D), and velocity (V) features separately. AccI-VAD pools
the highest anomaly scores from each frame for P, D, and
V and normalizes each feature type by its min/max training
counterpart. Finally, the scores of P, D, and V are added up
using pairs of the feature types and the triplet. MULDE dif-
fers in that regard, instead of min-/max-normalization, we
standardize by the training statistics, then clip negative val-
ues which are normal, and add up. We follow AccI-VAD’s
ablation protocol for MULDE and present the results for
the Avenue data set in Table 3. Table 4 contains the results
obtained for ShanghaiTech. For Avenue, the combination



P D V
Micro Macro

AccI-VAD MSMA∗ MULDE MULDEβ=0
AccI-VAD MSMA∗ MULDE MULDEβ=0kNNP, D GMMV kNNP, D GMMV

✓ 73.8 84.2 84.6 84.5 76.2 87.0 86.5 86.0
✓ 85.4 87.7 89.0 87.5 87.7 87.9 88.0 88.3

✓ 86.0 83.6 86.6 87.4 89.6 87.2 91.8 92.7

✓ ✓ 89.3 89.5 91.5 90.6 88.8 89.5 91.0 91.0
✓ ✓ 93.0 89.4 93.1 92.5 95.5 91.2 94.7 94.7

✓ ✓ 87.8 86.7 91.1 90.2 93.0 90.5 95.3 95.8

✓ ✓ ✓ 93.3 90.2 94.3 93.1 96.2 92.5 96.1 96.1

Best 93.3 90.2 94.3 93.1 96.2 92.5 96.1 96.1

Table 3. Detailed results for object-centric setup for the Avenue dataset on the micro and macro frame-level AUC-ROC evaluation.
Combinations of the object-centric pose (P), deep features (D), and velocities (V) features following the AccI-VAD [17] ablations. For
every object-centric feature and its combinations, we mark the best scores bold and underline the second-best. *adapted from image-based
anomaly detection (MSMA) to object-centric VAD.

P D V
Micro Macro

AccI-VAD MSMA∗ MULDE MULDEβ=0
AccI-VAD MSMA∗ MULDE MULDEβ=0kNNP, D GMMV kNNP, D GMMV

✓ 74.5 76.4 78.5 76.0 81.0 82.2 83.6 82.1
✓ 72.5 74.6 76.6 74.9 82.5 78.8 82.3 83.0

✓ 84.4 81.5 82.0 82.4 84.8 86.1 88.1 88.2

✓ ✓ 76.7 81.5 82.6 80.5 84.9 89.5 88.8 87.5
✓ ✓ 84.5 79.3 82.2 81.7 88.7 83.5 87.9 87.4

✓ ✓ 85.9 84.1 86.6 86.4 88.8 90.0 91.5 91.0

✓ ✓ ✓ 85.1 83.7 86.7 84.8 89.6 90.2 90.6 89.8

Best 85.9 84.1 86.7 86.4 89.6 90.2 91.5 91.0

Table 4. Detailed results for object-centric setup for the ShanghaiTech dataset on the micro and macro frame-level AUC-ROC evaluation.
Combinations of the object-centric pose (P), deep features (D), and velocities (V) features following the AccI-VAD [17] ablations. For
every object-centric feature and its combinations, we mark the best scores bold and underline the second-best. *adapted from image-based
anomaly detection (MSMA) to object-centric VAD.

of all three feature types gives the best micro and macro
scores. Similarly, for ShanghaiTech, P, D, V leads to the
best micro score, and the combination of P and V leads
to the best macro score. These results show that it might
be beneficial to combine features, encoding complementary
information. MULDE makes this combination easy as it is
feature-agnostic.

Performance in terms of the region- and track-based
detection criteria The region- and track-based detection
criteria (RBDC and TBDC) were introduced by Ramachan-
dra and Jones [15] to assess the anomaly localization ca-
pabilities of VAD methods, which are not captured by the
more common frame-level AUC-ROC scores.

RBDC and TBDC require pixel-level anomaly scores.
AccI-VAD [17], SSMTL [6], BA-AED [7], MULDE ap-
ply the anomaly score to the bounding-box, i.e. the region
obtained by the object detector. We computed the RBDC
and TBDC metrics for MULDE using the code and annota-

Method Avenue ShanghaiTech

RBDC TBDC RBDC TBDC

Ramachandra et al. [15] 35.8 80.9 - -
Ramachandra et al. [16] 41.2 78.6 - -
Frame-Pred. [11] - - 17.0 54.2
CAE-SVM [9] - - 20.6 44.5
BA-AED [7] 65.0 67.0 41.3 78.8
SSMTL [6] 57.0 58.3 42.8 83.9
SSMTL [6]+UBnormal [1]† 61.1 61.4 47.2 86.2

MULDED (ours) 73.1 74.4 48.9 81.2
MULDEV (ours) 13.8 46.8 55.0 85.6
MULDED, V (ours) 71.8 79.2 52.7 83.6

Table 5. Localization-based evaluation using RBDC and TBDC
scores [15]. We provide scores for regions based on deep features
(D) only, velocity (V) only and the combination of D, V. †extended
training data used.

tions released by Georgescu et al. [7]. We provide RBDC
and TBDC scores for regions based on deep features (D)



L 4 8 16 32 64

AUC-ROC 72.16 72.80 72.89 72.95 72.99

Table 6. Frame-centric results on UBnormal for a different num-
ber of noise scales L. Frame-level micro AUC-ROC (%).

only, velocity (V) only, and the combination of D and V in
Table 5. Pose (P) is not used for this evaluation, as the fea-
tures provided by Reiss and Hoshen [17] are already nor-
malized to the top left image corner and thus, can not be
attributed to a specific location within the frame. For com-
parison, we report the results of the baseline methods af-
ter [1]. MULDE clearly outperforms previous approaches
in terms of the region-based RBDC. In terms of the TBDC,
MULDE is among the top-performing approaches, outper-
formed only by [15] on Avenue and by [1] (which requires
additional training data) on ShanghaiTech.

2.3. Parameter selection and alternatives to GMM

In this section, we discuss the selection of the noise range
σ, the selection of the number of noise scales L, details on
the GMM fitting and alternative approaches to the GMM
fitting.

Noise range selection of σ Even though our method elim-
inates the need to select the noise range [σlow, σhigh] used for
training, the range of employed noise scales should be suf-
ficiently large to cover anomalies that would be seen at test
time. Currently, there is no automatic way to select the up-
per limit of the noise range. We circumvent this limitation
by standardizing the features component-wise and using a
fixed, wide range of noise scales. We set σhigh = 1.0 to
make it equal to the standard deviation of the distribution
of training video features. The σlow = 0.001 was selected
to make the interval wide. We kept this range for all data
sets, even though Figure 4 of the main manuscript (frame-
centric micro score on ShanghaiTech) suggests that such
a wide interval might not be necessary: When used with a
single σ, MULDE performs best for σ = 0.33, and σ < 0.2
or σ > 0.5 lead to much lower scores. Initial experiments
showed promising results across all the datasets; thus, we
did not fine-tune these hyperparameters.

Selection of number of noise scales L In all the reported
experiments, we decimated the range of noise scales into
L = 16 points. Testing other values of L in the frame-
centric VAD on UBnormal (results reported in Table 6) re-
veals that MULDE is not sensitive to the number of noise
scales used.

Details on GMM fitting Once the network fθ is trained,
we compute the multi-scale log-density approximation for
each video feature x in the training set T . This results

in a data set of vectors {[fθ(x, σ1), . . . fθ(x, σL)]}x∈T .
In other words, each single d−dimensional video fea-
ture x is evaluated at L noise scales which results in
a new L−dimensional feature vector. We then fit a
L−dimensional GMM with one, three, and five components
to this set of vectors using the Expectation–maximization
algorithm.

At test time, our neural network takes a vector of a video
feature and produces a multi-scale vector of log-density ap-
proximations, which is then input to the GMM yielding a
negative log-likelihood which we use as the anomaly score.
Finally, like in previous work [1, 2, 6, 7, 9, 17], these scores
are temporally smoothed with a 1d-Gaussian filter to obtain
the final anomaly score.

Alternatives to GMM As discussed in section 3.3 of the
manuscript, in theory, a log-likelihood estimation at a well-
chosen noise level is sufficient to detect anomalies. This
is confirmed by the result presented in Fig. 4 of the pa-
per, where we see that using the best, single noise level
yields a micro score on par with the GMM. However, the
choice of the optimal noise scale is not trivial: the noise
should be high enough to blend modes of the probability
density function originating from individual training sam-
ples but not so high as to distort the shape of the original,
noise-free distribution. It is difficult to determine the opti-
mal noise level without anomalous validation data, which
prompted us to use the GMM. Theoretically, we could sub-
stitute the GMM with an alternative aggregation method,
for example, max-, average-, or median-pooling. We eval-
uated these methods as follows: Before pooling, we equal-
ized the log-density estimates by standardizing them across
each noise scale with their respective means and standard
deviations computed over the training set. We evaluate the
alternative pooling method to the frame-centric experiment
on ShanghaiTech. As reported in Table 2 in the manuscript,
MULDEβ=0 with the GMM attains a Micro score of 78.4.
This result decreases to 76.30 with max-pooling, 76.02 with
average-pooling, and 75.83 with median-pooling instead of
the GMM.
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