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1. Supplementary Material

We provide more details on the datasets, architectures, and
training pipelines. We also provide results on the much
smaller CIFAR100 distillation benchmark, where we show
competitive or improved performance over state-of-the-art.
Finally, we include some qualitative results for the image
generation and the complete derivations for orthogonality
and whitening.

1.1. Datasets

We conduct experiments over a few widely adopted datasets
including CIFAR [6], ImageNet [12], and COCO [7].

CIFAR classification consists of 60K 32x32 RGB images
across either 10 or 100 classes with a 5:1 training/testing
split. The models are each trained with 100%, 20% or 10%
training images [3].

ImageNet classification uses 1.3 million images from
1000 different classes. In these experiment, we set the input
size to 224 x 224, and follow the same training pipeline and
augmentations provided by DeiT [14].

COCO includes a large-scale object detection bench-
mark, which we use to evaluate the ViDT model variants. It
consists of 330k images with 80 different object categories.

1.2. Handcrafted projections

We compare our method to a handcrafted projection. For
this projection we match the student features with a trun-
cated SVD decomposition of the teacher features. In this
way the student will align with the principle components of
the teacher. The results are shown in figure 1 and although
some good performance is achieved, it falls on achieving the
top-end accuracy attained by an orthogonal projection. We
expect this drop in performance is likely a consequence of
the improved gradient flow when performing the loss in the
larger teacher space and also that the smaller principle com-
ponents are indeed contributing to the discriminative power
of the learned representation. Furthermore, computing the
SVD is much more computationally expensive due to the
expensive decomposition required for each batch.
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Figure 1. Comparison between using an orthogonal projection to
using a truncated SVD of the teacher features. We observe consis-
tent improvement in performance and convergence, while being
much more computationally efficient.

1.3. Experiments on CIFAR100

CRD [13] provides an easy benchmark for most distillation
methods. However, the results on this benchmark have be-
come increasingly saturated, where many methods are even
reporting better student performance than the teacher. This
situation alone raises questions on whether the improve-
ment is down to an improved knowledge distillation, or sim-
ply through the introduction of implicit model regularisa-
tion. Despite these limitations, we do provide some results
on this CIFAR100 benchmark in table 1. Here we observe
competitive performance to previous state-of-the-art on a
few of the challenging cross-architecture settings.

Although ReviewKD [2] achieves very strong perfor-
mance on this benchmark, its application is limited to the
CNN — CNN settings. Furthermore, it requires many addi-
tional trainable parameters and has a much larger memory
overhead since the intermediate representations are needed
to compute the loss.

1.4. Implementation details

Patch token distillation is used to distill from or to
a transformer based model and can be seen in Fig. 2.



Distillation Teacher vggl3 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2

Mechanism Student MobileNetV2 MobileNetV2 vgg8 ShuffleNetV1 ShuffleNetV2  ShuffleNetV1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.60 64.60 70.36 70.50 71.82 70.50
Logit KD [4] 67.37 67.35 73.81 74.07 74.45 74.83
08! DKD [17] 69.71 70.35 . 76.45 77.07 76.70
FitNet [11] 64.14 63.16 70.69 73.59 73.54 73.73
AT [16] 59.40 58.58 71.84 71.73 72.73 73.32
Intermediate NST [5] 58.16 64.96 71.28 74.12 74.68 74.89
SP[15] 66.30 68.08 73.34 73.48 74.56 74.52
ReviewKD [2] 70.37 69.89 - 77.45 77.78 77.14
CC[10] 64.86 65.43 70.25 71.14 71.29 71.38
RKD [8] 64.52 64.43 71.50 72.28 73.21 72.21
PKT [9] 67.13 66.52 73.01 74.10 74.69 73.89
Representation CRD [13] 69.94 69.54 74.58 75.12 76.05 76.27
P WCOoRD [1] 70.02 70.12 74.68 75.717 76.48 76.68
Vi.D 70.11 70.65 74.95 77.05 77.51 77.19

A

Table 1. CIFAR-100 test accuracy (%) of student networks trained with a number of distillation methods. The best results for each
distillation mechanism are highlighted in bold. A represents the performance improvement over classical KD. Representation is used here

to describe the features directly before the final classifier.
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Figure 2. Patch token distillation between transformer and CNN
models. We replace the projection with an orthogonal projection,
while for the normalisation we either use layer norm or iterative
whitening. For the pooling we adopt a simple global average.

Feature Maps

This method was adopted since adding more distillation to-
kens [14] would introduce additional trainable parameters.
Using a pooling strategy over the patch tokens proved to be
very simple and effective.

2. Qualitative results for image generation

Fig. 3 shows some example images generated using the
Vi, D distilled BigGAN model trained on CIFAR100. The
results demonstrate a very diverse generation of images,
while preserving a lot of structural object information.

2.1. Computational overhead

As shown in Tab. 2, during training, we only observe a
small increase in latency but almost no increase in GPU
memory. Most other methods come with a significant in-

Figure 3. Example images generated using our VD distilled Big-
GAN model using the CIFAR-100 training dataset.

Method Time (s) Memory (GiB)
Linear 0.72 £ 0.01 17.67
Orthogonal ~ 0.98 4 0.02 17.82
RKD 0.76 = 0.01 19.60
VID 0.93 +£0.01 25.95
ICKD 0.78 £ 0.02 19.97
CRD 0.80 = 0.02 21.46

Table 2. Timing and memory of different methods in ImageNet.
We distill to a DeiT-S with an effective batch size of 1024 on Im-
ageNet using 2 NVIDIA V100 GPUs.

crease in memory, while also incurring additional training
time overheads. There is also no inference overhead since
we throw away the orthogonal projection after training.



Dataset  Metric No Norm  Layer Norm  Whitening

cl10 Precision 0.87 0.85 0.88
Recall 0.72 0.69 0.74

Density 1.14 1.00 1.12

Coverage 0.95 0.95 0.96

Precision 0.88 0.85 0.88

C100 Recall 0.04 0.00 0.71
Density 1.07 0.86 1.17

Coverage 0.56 0.15 0.96

Table 3. Evaluation for the fidelity and diversity of the distilled
student models. Although we observe only a small improvement
in recall when whitening the target teacher features for CIFAR10,
we find it is critical in avoiding mode collapse for the more diverse
CIFAR100 dataset.
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Figure 4. Normalisation improves convergence for discriminative
tasks by improving the robustness of the loss to small/irrelevant
perturbations in the input image.

2.2. Quantitative diversity metrics

We provide an evaluation metric on the feature diversity in
Tab. 3. We generated 5k images from each model trained
with or without our whitening and also with layer normal-
ization. We see that whitening does encourage image diver-
sity while also improves the FID and IS realism scores.

2.3. Normalisation improves convergence

Fig. 4 shows the evaluation results after each epoch of train-
ing. Here we confirm that the normalisation step does im-
prove the model convergence. We find that simply extend-
ing the un-normalised training pipeline is enough to recover
the drop in accuracy.

2.4. Further analysis

In this section we provide the complete derivations to sup-
plement the illustrative analysis in the main manuscript.

Orthogonality of exp(W). If W is a skew-symmetric
matrix, then it admits the property W7 = —W. Its matrix-
exponential is then given by:

w2 w3
eXp(W):I—FW—FT‘F?
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Since W is skew-symmetric, the transpose of this exponen-
tial is given as follows:

w2 w3

exp(W)T:I—W—&—T—?... 2)

— exp(~W) 3)

Thus exp(W)exp(W)T = exp(W)exp(—W) = 1,
which confirms that exp(W) is indeed orthogonal.

Whitening and feature diversity In this section we pro-
vide a more thorough investigation into the connection be-
tween the use of whitening and feature diversity. Our loss
is simply the pair-wise distance between the student and
teacher features. Through simple algebraic manipulation,
we can re-express this loss as follows:

Laistn = || Z° — ZtH2
= Z\Zs] —Zl, -2+ 7,
i#j
=125, - ZifP + |2, + 20| )
i#]
where Z?! is whitened such that (Z*)”(Z!) = 1. This means
that the magnitude of each feature will be equal to one and
the dot product between the different features within a batch

will be zero. We can express these two properties as fol-
lows:

124 = 1.
decorrelated : (Z!,,7¢,) =0 %)

unit length :

Substituting into the second term of equation 4 leads to
the following simplification:

Laen = |22, — 28| +2-2(23, - 2!, 2 ; + Z!,)
i#A]

Using the Cauchy-Schwartz inequality, we can find a
lower bound on this loss.
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This bound is minimised when the distance between
each i # j student and teacher feature is maximised. Simi-
larly, the L2 loss itself in equation 4 minimises the pair-wise
distance between features. These two results show that the
whitening operation jointly minimises the pairwise similar-
ity, while also maximising an upper bound for the cross fea-
ture diversity.
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