
Objects as volumes: A stochastic geometry view of opaque solids

Supplementary Material

A. Volumetric representation of point clouds

In this section, we discuss how our theory relates to prior
work on modeling point clouds, and how their combination
enables volume rendering of point clouds.
Stochastic Poisson surface reconstruction (SPSR). Sellán
and Jacobson [52] propose a stochastic model for opaque
solids as excursion sets of Gaussian processes conditioned
on point clouds. Using our notation, their model corresponds
to Equations (24)–(25) as

vSPSR(x) = 1−oSPSR(x) ≡ ΨGaussian(s(x) f(x)), (31)

where ΨGaussian is the CDF for the zero-mean, unit-variance
Gaussian distribution; and the mean implicit function f(x)
and scale s(x) are parameterized as functionals of a point
cloud. For volume rendering, they use the occupancy oSPSR

in place of the attenuation coefficient σ [52, Section 8.2].
Our theory disambiguates the occupancy and corresponding
attenuation coefficient, which from Equation (16) (assuming
perfectly anisotropic projected area) becomes:

σSPSR(x,ω) ≡ ∥∇ vSPSR(x)∥
vSPSR(x)

· |ω · n(x)| . (32)

Volume rendering of point clouds. To highlight the impor-
tance of disambiguating vacancy and the attenuation coeffi-
cient, we use single-bounce volume rendering to synthesize
images of a point cloud scene from SPSR [52] under point
light illumination. In Figure 7, we compare the images result-
ing from using the attenuation coefficient our theory predicts
in Equation (32), versus using the vacancy in Equation (31)
in place of the attenuation coefficient. Using the attenuation
coefficient results in images that more accurately convey the
appearance of the opaque solid underling the point cloud.

We use the same scene for an additional experiment that
highlights the importance of enforcing reciprocity in volu-
metric representations of opaque solids. We consider variant
of Equation (32) that replaces the perfectly anisotropic pro-
jected area with the ReLU-based one from NeuS [63]:

σSPSR,NeuS(x,ω) ≡

∥∇ vSPSR(x)∥
vSPSR(x)

· ReLU(−ω · n(x)) . (33)

We use the attenuation coefficients of Equations (32) and (33)
to synthesize images with two volume rendering algorithms:
volumetric path tracing (trace rays starting from the camera)
and volumetric light tracing (trace rays starting from the
light source) [57]. Under a physically-plausible, reciprocal
volumetric representation, both algorithms should produce

identical images. We show in Figure 7 that using our re-
ciprocal attenuation coefficient in Equation (32) produces
images that are a lot closer to each other (up to discretiza-
tion and noise artifacts) than those using the non-reciprocal
attenuation coefficient in Equation (33) that NeuS suggests.

B. Global illumination representation
We briefly discuss the global illumination term in the volume
rendering equation (5). In deterministic light transport algo-
rithms, global illumination appears as the outgoing radiance
in the conservation of radiance equation. From the reflection
equation, the outgoing radiance equals:

Lo(x,ωo) =∫
H2(x)

fr(x,n(x),ωo,ωi)Li(x,ωi)⟨ωi,n(x)⟩dωi, (34)

where H2(x) ≡
{
ω ∈ S2 : ω · nx ≥ 0

}
is the positive

hemisphere and fr is the bidirectional distribution reflection
function (BRDF) at point x. In volumetric light transport
algorithms, global illumination appears as the conditional
expectation of the outgoing radiance in the volume render-
ing equation (5). Dropping the distinction between expected
and actual radiance to ease notation, from the in-scattering
equation [23, Section 3.1], the outgoing radiance equals:

Lo(x,ωo) = a(x)

∫
S2

fp(x,ωo,ωi)Li(x,ωi) dωi, (35)

where a ∈ [0, 1] is the albedo and fp is the phase function
at point x. Jakob et al. [25, Section 3] prove that reciprocal
exponential transport requires that the attenuation coefficient
σ and phase function fp satisfy for all directions ωo,ωi:

σ(x,ωo)fp(x,ωo,ωi) = σ(x,ωi)fp(x,ωi,ωo). (36)

Lastly, Heitz et al. [23, Section 5] show that, when the atten-
uation coefficient has the form of Equation (16) in Defini-
tion 5, the phase function fp relates to the BRDF fr of the
underlying deterministic geometry as:

fp(x,ωo,ωi) =
1

σ⊥
D(x,ωo)

·
∫
S2

fr(x,m,ωo,ωi)|ωo ·m|Dx(m) dm. (37)

Equation (37) expresses the phase function as the expected
value of the foreshortened BRDF with respect to the distri-
bution of normals D used also to define the projected area
σ⊥
D in Equation (14). We make three observations: 1. The

phase function in Equation (37) satisfies the reciprocity re-
lation in Equation (36). 2. Heitz et al. [23] derived Equa-
tion (37) in the context of microflake models for stochastic

SPSR
light tracing relative errorpath tracing light tracingpath tracing

NeuS ours
relative error

low high

path tracing

low high

input point cloud

Figure 7. Comparison of point-cloud volume renderings on a scene from SPSR [52]. Using the vacancy vSPSR in place of the attenuation
coefficient as SPSR suggests results in images that do not convey the appearance of an opaque solid. Using a non-reciprocal attenuation
coefficient σSPSR,NeuS as NeuS suggests results in significant differences between images from different rendering algorithms. Using the
reciprocal attenuation coefficient σSPSR our theory suggests results in accurate images under both rendering algorithms.

microparticle geometry. The similarity between the atten-
uation coefficient in our theory (Definition 5) and that in
microflake models allows us to apply Equation (37) also for
stochastic solid geometry. 3. As in the microflake model
for stochastic microparticle geometry, we can use different
BRDFs fr in Equation (37) (e.g., specular or Lambertian)
to derive corresponding phase functions for the stochastic
solid geometry. Then, different distribution of normals D
correspond to different levels of “roughness” of the under-
lying geometry, in analogy with the distribution of normals
in microfacet BRDF models (e.g., GGX [60] or Oren-Nayar
[46] models for rough specular or Lambertian, respectively,
reflectance). However, reciprocity requires using the same
distribution of normals for both the phase function and atten-
uation coefficient, and thus jointly constrains geometry and
global illumination in the volume rendering equation (5).
Integrated directional encoding. Neural rendering
pipelines typically represent the global illumination in Equa-
tion (5) as a neural field with positional and directional in-
puts. This representation makes it difficult to exactly enforce
Equations (35) and (37). Verbin et al. [58] showed how to
approximately do so with an integrated directional encoding
that computes moments of directional inputs with respect
to the distribution of normals describing surface roughness.
Equation (37) suggests that we can combine our volumet-
ric representation with integrated directional encoding, by
using the same distribution of normals D for both.5 This
approach links the geometry and global illumination terms
in the volume rendering equation (5), as reciprocity requires.

In particular, Verbin et al. [58] use a distribution of nor-
mals Dx that equals the von-Mises Fisher distribution with
center at the normal n(x) and concentration parameter
κ(x) ≡ α(x)/1−α(x), where α(x) ∈ [0, 1] is a spatially

5A caveat to this approach is that, whereas our Definition 5 and Equa-
tion (37) use D as a distribution of normals, the integrated directional
encoding of Verbin et al. [58] uses it as a distribution of reflected directions.
This discrepancy is analogous to the difference between the Blinn-Phong
and Phong BRDFs, which randomize normals (or equivalently, half-way
directions) versus reflected directions, respectively [10]. Ramamoorthi
and Hanrahan [49, Appendix] show that, for the von-Mises Fisher distri-
bution that Equation (38) and the integrated directional encoding use, this
discrepancy introduces only a small approximation error.

varying anisotropy parameter.6 Using Equation (14), the
corresponding projected area equals:

σ⊥
vMF(x,ω) ≈ α(x) + 1

2
|ω · n(x)|α(x) . (38)

The proof of Equation (38) is exactly analogous to that by
Han et al. [21, Section 7.2], and uses the same approxima-
tions as in the derivation of the equations for the integrated
directional encoding [58, Equation (8), Appendix A]. It is
worth comparing σ⊥

vMF in Equation (38) to σ⊥
mix and σ⊥

SGGX

in Equations (17) and (45): all three projected area terms be-
come fully anisotropic and isotropic at the limit values α = 1
and α = 0, respectively, and produce different interpolations
between these extremes at intermediate values.
Novel-view synthesis experiments. We demonstrate the im-
portance of linking representations for geometry and global
illumination in the volume rendering equation Equation (5)
through proof-of-concept experiments on novel-view syn-
thesis. We use Ref-NeRF [58] as a baseline, and modify
its architecture to use our attenuation coefficient in Equa-
tion (26) with projected area as in Equation (38) (Figure 8).
Importantly, our modification uses the same roughness ρ
(equivalently, anisotropy α) for both the projected area and
integrated directional encoding. The qualitative and quanti-
tative results in Figure 9 and Tables 4 and 5 show that our
modifications improve normal and appearance predictions.
Implementation details. We briefly discuss important im-
plementation details for our multi-view synthesis experi-
ments. We build on the Ref-NeRF implementation in the
Multi-NeRF codebase [37]. We modify the normal loss to
compare with the level-set normals of the vacancy, ∇ v/∥∇ v∥,
instead of the attenuation coefficient, ∇σ/∥∇σ∥—our theory
shows that the two are not equal (Equation (16)) and the
former should better represent the underlying geometry.

Multi-NeRF takes advantage of the large memory capac-
ity of TPUs and uses large batch sizes during training. We
had access to only GPUs with 16GB of memory, so we had
to reduce the batch size from the default 214 to 29 rays per
batch. We also followed a suggestion in the Github reposi-

6Verbin et al. [58] parameterize the von-Mises Fisher distribution using
an unbounded roughness parameter ρ ∈ [0,∞), which we replace with our
bounded anisotropy parameter α ≡ 1/ρ(x)+1.

spatial
MLP directional

encoding
color

postprocessing

directional
MLP

Ref-NeRF

our theory

projected
area

density
Eq. (15)

Eq. (38)

Eq. (26)
σ∥

σ⊥
vMF

σ

c

x
ω

f

ρ

n̂

θ

cd, s

Figure 8. Visualization of our modifications to Ref-NeRF [58].

reference Ref-NeRF ours

33.51 dB / 16.22° 33.81 dB / 15.94°

24.69 dB / 40.41° 24.82 dB / 24.96°

PSNR ↑ / MAE ↓

PSNR ↑ / MAE ↓
Figure 9. Qualitative results for the Shiny Blender dataset.

Table 4. PSNR values on the Shiny Blender dataset.

Shiny Blender Ref-NeRF ours

TEAPOT 44.07 43.35
TOASTER 24.69 24.82
CAR 29.07 28.84
BALL 32.48 32.79
COFFEE 33.51 33.81
HELMET 29.31 30.31

mean 32.19 32.32
median 30.89 31.55

Table 5. Mean average error (MAE) values for learned normals on
the Shiny Blender dataset.

Shiny Blender Ref-NeRF ours

TEAPOT 48.48 42.86
TOASTER 40.41 24.96
CAR 21.68 18.06
BALL 98.94 38.18
COFFEE 16.22 15.94
HELMET 50.62 21.46

mean 46.06 26.91
median 44.45 23.21

tory of Multi-NeRF to reduce the learning rate when using
smaller batch sizes. Instead of scheduling the learning rate
to decay from 2 × 10−3 to 2 × 10−5, we use a schedule
from 5 × 10−4 to 5 × 10−6. These settings lead to worse

performance than what Ref-NeRF reports [58]. Therefore,
for a fair comparison, we run Ref-NeRF with our training
settings. We use the default 250 k iterations, which on an
NVIDIA V100 Tensor Core GPU takes 18 hours.

C. Relationship to other prior work

Occupancy networks. Mescheder et al. [35] and Niemeyer
et al. [40] propose an alternative to volume rendering for
stochastic opaque solid models. They define an occupancy
and vacancy model as in Equation (24) similar to NeuS,

vONet(x) ≡ Ψlogistic(s f(x)). (39)

where the mean implicit function f(x) is a (trainable) neural
field. However, instead of converting this occupancy to an
attenuation coefficient σ for volume rendering, they define
what we term the maximum a posteriori (MAP) opaque solid
OMAP ≡

{
x ∈ R3 : v(x) ≤ 1/2

}
. This approach is equiva-

lent to setting at each point x the random indicator function
I(x) equal to its MAP estimate ÎMAP(x) ≡ 1{v(x)≤1/2}—
hence the term MAP opaque solid.

Mescheder et al. [35] proceed to render OMAP using de-
terministic intersection queries and rendering algorithms.
This approach is analogous to setting, during deterministic
rendering, the free-flight distance t∗x,ω equal to its MAP es-
timate t∗x,ω,MAP ≡ argmax t∈[0,+∞) p

ff
x,ω(t). By contrast,

volume rendering (Equation (5)) computes the expectation
over the free-flight distance t∗x,ω . By using point estimation
instead of expectation, the MAP approach discards uncer-
tainty information available in o(x) about the scene. Addi-
tionally, recent work has demonstrated the benefits of volu-
metric representations for novel-view synthesis [7, 36, 58]
and 3D reconstruction [45, 63, 66], motivating our focus on
volumetric representations.
Discretization approaches. Another approach for deriving
volumetric representations for opaque solids is to discretize
a ray and define the free-flight distribution using discrete
occlusion events [8, 45, 55]. We specialize this discussion to
exponential transport. Along each ray, these approaches are
discrete-time approximations to the continuous-time binary
Markov process Ix,ω(t) underlying our model [42]. Alter-
natively, but equivalently, they correspond to a piecewise-
constant approximation to the attenuation coefficient σ asso-
ciated with the indicator function, as we explain below.

We consider a segment [t0, tN] along a ray rx,ω(t), which
we break into N segments [tn, tn+1], n = 0, . . . , N −
1, such that t0 < t1 < · · · < tN . (These segments can
have unequal lengths.) The probability that a ray will not
terminate within segment [tn, tn+1] equals:

Vn ≡ Tx,ω(tn, tn+1) (40)

= exp

{
−
∫ tn+1

tn

σ(rx,ω(s),ω) ds

}
, (41)

where we used Definition 1 and expanded the notation for
transmittance in Equations (1) and (6). The quantity Vn

is a discrete analogue of the vacancy v of the continuous-
time Markov process Ix,ω(t): it equals the probability that
Ix,ω(t) = 0 for all t ∈ [tn, tn+1], and thus all points along
the ray segment are vacant. We also define a discrete oc-
cupancy as On ≡ 1 − Vn. With this notation, assuming
Markovianity, the probability that a ray terminates at seg-
ment n after traveling through the previous segments—i.e.,
the discrete analogue of the free-flight distribution—equals:

Pff
n ≡ On

n−1∏
m=0

Vm = (1−Vn)

n−1∏
m=0

Vm . (42)

Lastly, if we approximate the attenuation coefficient on the
segment [tn, tn+1] as a constant σ̄n, then from Equation (40)
the discrete vacancy becomes:

Vn = exp{−σ̄n · |tn+1 − tn|}. (43)

Equations (42)–(43) correspond exactly to the model for
ray tracing through discretized opaque geometry in previous
literature [8, 45, 55, 56]. As we discuss in Appendix D, they
are also equivalent to the common procedure for numeri-
cally approximating the free-flight distribution when volume
rendering continuous opaque geometry [34, 36].

Importantly, most previous discretization-based ap-
proaches model not the (piecewise-linear) attenuation coeffi-
cient σ̄ in Equation (43), but directly the discrete vacancy Vn

(or occupancy On). They do so using either a grid [8, 55, 56],
or a neural field [45]—i.e., Vn := neural net(rx,ω(tn)).

Unfortunately, directly modeling the discrete vacancy
in this way does not account for the ray-segment length
term |tn+1 − tn| in Equation (43), which is problematic
when considering segments of varying length (e.g., in multi-
resolution approaches, or when ray discretization is non-
uniform). As an example, we consider the discrete free-flight
distribution Pff

n in Equation (42) for the same ray rx,ω(t),
first at discretization resolution ∆t, then at a finer resolution
∆t/2. In the latter case, Pff

n will equal the product of twice
as many Vn terms as in the first case. If these terms are
directly provided by, e.g., a neural field that does not account
for the change in ray-segment length as resolution changes,
then increasing discretization resolution results in a much
lower value for the discrete free-flight distribution of the
same ray. By contrast, we can elide this problem by using
the neural field to output the attenuation coefficient σ̄n, then
computing the vacancy terms Vn through Equation (40)
while accounting for varying ray-segment lengths.

D. Implementation details
We discuss implementation details for our 3D reconstruc-
tion experiments. Our volumetric neural rendering pipeline
builds on top of the NeuS pipeline [63].
Quadrature algorithm. An important algorithmic compo-

nent of volumetric rendering pipelines is the numerical inte-
gration (i.e., quadrature) along a ray of the free-flight distri-
bution and expected radiance terms in the volume rendering
equation (5). Quadrature algorithms work in two stages: first,
they sample locations along the ray; second, they approxi-
mate the free-flight distribution and expected radiance along
the ray segments between samples. Several quadrature algo-
rithms have appeared in both graphics [18, 27, 30, 41, 43]
and vision [7, 36, 45, 58, 63, 66]. In particular, the volumet-
ric representations in prior work we discussed in Section 4
all use their own quadrature algorithms. Unfortunately, this
makes it difficult to experimentally compare different volu-
metric representations on equal terms: empirically, we have
found that performance differences between different repre-
sentations are often primarily due to the different underlying
quadrature algorithms, rather than the different attenuation
coefficient expressions. Therefore, to ensure a fair and in-
formative comparison, in our experiments we use for all
volumetric representations the same quadrature algorithm,
which combines a sampling technique inspired by Oechsle
et al. [45] with the numerical approximation by Max [34]
(Equations (42)–(43)). We have found that this quadrature
algorithm performs well for all representations we tested.

The sampling component of our quadrature algorithm,
which we visualize in Figure 10, works as follows: We first
intersect a ray with a bounding sphere of the scene. Then,
we divide the ray into 1024 segments, evaluate the mean
implicit function f at the endpoints of each segment, and
check for sign changes between the endpoints. The free-
flight distribution pff is concentrated within the segment
containing the first sign change of f , and Oechsle et al. [45]
suggest placing most samples in this segment. We follow
their suggestion and sample a total of 64 points in three sets—
one-third of the sample points within the segment with the
first sign change, another third in the part of the ray before
this segment, and the remaining third in the part of the ray af-
ter. If there is no segment with a sign change, we allocate the
entire set of 64 samples along the entire ray. For each of the
three sample sets, we select the sample locations within their
corresponding ray intervals using the equidistant sampling
comb approach of Kettunen et al. [27]: we deterministically
place the samples at equidistant intervals, then shift them all
by the same uniformly-sampled random offset.
Network architecture. Our pipeline mimics NeuS [63], us-
ing two multi-layer perceptrons (MLPs) to encode the mean
implicit function and volume emission, with the addition of
another small MLP to encode the anisotropy parameter.

The mean implicit function MLP has 8 hidden layers
with 256 neurons per layer and SoftPlus activations with
β = 100. A skip connection combines the output of the
fourth layer with the original input. It takes as input the
spatial position, and outputs the mean implicit function value
and a 256-dimensional feature vector.

mean implicit function
first ray segment
with a sign change

sample points
equidistant samples
with random shift

within each interval

f

Figure 10. Visualization of our importance sampling algorithm,
whoch concentrates points within the first ray segment at whose
endpoints the mean implicit function f has opposite signs.

The volume emission MLP has 4 hidden layers with 256
neurons per layer and ReLU activations. It takes as input
the spatial position, viewing direction, unit normal of the
isosurface of the vacancy function, and the 256-dimensional
feature vector from the mean implicit function MLP.

The anisotropy MLP has 1 hidden layer with 256 neurons
and sigmoid activation. It takes as input the 256-dimensional
feature vector from the mean implicit function MLP.

All positional and directional inputs to the MLPs use fre-
quency encoding [36], with 6 frequencies for positional and
4 frequencies for directional inputs. As in NeuS, all linear
layers use weight normalization [51] to stabilize training.
Background radiance field. To enable surface reconstruc-
tion on unbounded scenes, such as those in the BlendedMVS
dataset, we follow the approach of NeuS [63] and VolSDF
[66]: We perform surface reconstruction only inside a bound-
ing sphere, and treat its exterior as a neural radiance field.
We use the inverted sphere parameterization from NeRF++
[69] for the exterior of the sphere. To learn the background
radiance field, we sample along each ray an additional 32
points on the exterior of the bounding sphere, uniformly
with respect to inverse distance in the range [0, 1/R), where
R = 3 is the bounding sphere radius. As in VolSDF, we do
not learn a background radiance field for the DTU scenes.
Regularization and initialization. We follow NeuS [63]
and use eikonal regularization [20], and geometric initializa-
tion [4] for the mean implicit function f .
Training details. Our training protocol is the same as in
NeuS [63]. We train using the ADAM optimizer [28] for
300 k iterations with 512 rays per batch. During the first 5 k
iterations, we control the learning rate with a linear warmup
from 0 to 5 × 10−4; for the remaining iterations, we use a
cosine-decay schedule until the learning rate reaches a mini-
mum of 2.5× 10−5. Training on an NVIDIA V100 Tensor
Core GPU training takes 11 hours without the background
radiance field, and 12 hours with it.

E. Additional quantitative results
We provide complete versions of Tables 2–3 in Tables 6–7
(for Table 2) and Tables 8–9 (for Table 3).

In Table 9, we evaluate an additional option for the dis-

Table 6. Chamfer distances on the DTU dataset.

DTU VolSDF NeuS ours

24 2.25 3.57 1.92
37 3.19 4.02 2.35
40 1.94 1.99 1.96
55 1.61 1.71 1.11
63 1.87 2.04 1.83
65 2.12 2.37 2.01
69 1.61 1.70 1.30
83 1.60 2.33 1.53
97 2.18 2.38 1.62
105 1.73 3.17 1.50
106 0.94 1.07 0.71
110 1.91 1.09 1.56
114 1.51 1.16 0.83
118 1.36 1.37 1.52
122 1.74 1.83 1.78

mean 1.84 2.17 1.57
median 1.74 1.99 1.56

tribution of normals: We use the SGGX distribution that
Heitz et al. propose for stochastic microparticle geometry—
specifically its surface-like version [23, Equations (13)–(14)].
Using our notation and a reparameterization in terms of a
(spatially varying) anisotropy parameter α(x) ∈ [0, 1], this
distribution and corresponding projected area equal:

Dx,SGGX(m)≡ 1

D(α(x))
(
1−α(x)2|m · n(x)|2

)2 , (44)

σ⊥
SGGX(x,ω) ≡

1

Σ(α(x))

√
α(x)

2|ω · n(x)|2 + (1− α(x)
2
) , (45)

with normalization coefficients

D(α) ≡ α+ arctanh(α)− α2 arctanh(α)

2απ
, (46)

Σ(α) ≡ 1 +

(
1

α
− α

)
arcsinh

(
α√

1− α2

)
. (47)

Comparing the SGGX projected area of Equation (45) to
the mixture one in Equation (17), we see that—the normal-
ization coefficients aside—they behave similarly: σ⊥

SGGX

is a sum of squared terms, whereas σ⊥
mix is a sum of linear

terms. At the limits α = 1 and α = 0, they both reduce
to fully anisotropic and isotropic, respectively. Heitz et al.
[23] provide detailed justification for the use of the SGGX
distribution in the context of stochastic microparticle geom-
etry. In our context of stochastic solid geometry, the linear
mixture performed better in our ablation study (Table 9), so
we used it for the rest of our experiments.

Table 7. Chamfer distances on the NeRF Realistic Synthetic dataset.

NeRF RS VolSDF NeuS ours

CHAIR 0.0105 0.0182 0.0196
LEGO 0.0354 0.0555 0.0156
DRUMS 0.6081 0.9897 0.1769
FICUS 0.0279 0.0796 0.0436
HOTDOG 0.1654 0.2104 0.1295
MATERIALS 0.0231 0.0444 0.015
MIC 0.9141 0.1214 0.4344
SHIP 0.2351 0.0901 0.0711

mean 0.252 0.201 0.113
median 0.100 0.085 0.057

Table 8. Chamfer distances on the DTU dataset when using differ-
ent implicit function distributions Ψ for the density σ∥.

Ψ model logistic Laplace Gaussian

24 2.73 1.92 1.99
37 3.56 3.65 3.08
40 1.94 2.32 2.28
55 1.77 1.65 1.64
63 1.86 1.76 1.76
65 2.67 2.60 2.45
69 1.73 1.58 1.31
83 1.85 1.94 1.69
97 1.82 2.13 1.83
105 1.90 2.04 1.74
106 1.09 0.98 0.98
110 1.98 1.92 1.76
114 1.29 1.43 0.96
118 1.39 1.54 1.67
122 2.11 1.89 1.59
mean 1.98 1.96 1.78
median 1.86 1.92 1.74

F. Proofs

We provide proofs for our theory in Sections 3 and 4.

F.1. Exponential transport in opaque solids

We begin with the proof of Theorem 4. Our proof requires
background on continuous-time discrete-space Markov pro-
cesses, for which we refer to Norris [42] as one of many
excellent textbooks on this subject matter. We provide point-
ers to specific parts throughout the proof.

To sketch the proof: The free-flight distribution pffx,ω(t)
is the probability density that, starting from I(x) = 0, the
first 0 → 1 transition of the indicator function along the
ray (i.e., first intersection) happens at distance t. For this
distance to be an exponential random variable, the counting
process of 0 → 1 transitions must be a Poisson process.
Then, the continuous-time discrete-space random process

Table 9. Chamfer distances on the DTU dataset when using differ-
ent distributions of normals D for the projected area σ⊥.

D
model

delta
(ReLU)

delta mixture
(const.)

mixture
(var.)

SGGX
(var.)

24 3.57 2.73 2.43 2.16 2.10
37 4.02 3.56 4.16 3.40 3.32
40 1.99 1.94 1.94 1.76 1.83
55 1.71 1.77 1.85 1.43 1.64
63 2.04 1.86 1.85 1.60 1.80
65 2.37 2.67 2.19 1.97 2.34
69 1.70 1.73 1.57 1.54 1.43
83 2.33 1.85 1.79 1.55 1.49
97 2.38 1.82 2.25 1.91 2.20
105 3.17 1.90 1.85 1.53 1.82
106 1.07 1.09 0.99 1.32 0.89
110 1.90 1.98 1.89 1.59 1.79
114 1.16 1.29 1.37 1.26 1.15
118 1.37 1.39 1.75 1.31 1.35
122 1.83 2.11 1.73 1.85 1.95

mean 2.17 1.98 1.97 1.75 1.81
median 1.99 1.86 1.85 1.59 1.80

Ix,ω(t) must be Markovian,7 and Equation (12) follows from
the Kolmogorov equations [42] after enforcing reciprocity
and reversibility.

Proof. We extend Definition 1 to define the conditional
transmittance:

Tx,ω(t) ≡ PrO
{
t∗x,ω(t) ≥ t

∣∣ I(x) = 0
}
, (48)

the conditional free-flight distribution:

pffx,ω(t) ≡ − dTx,ω

dt
(t), (49)

and the conditional attenuation coefficient:

σ(x,ω) ≡ pffx,ω(0). (50)

Under the assumption of exponential transport, the transmit-
tance equals the conditional transmittance:

Tx,ω(t)
exponential

= Tx,ω(t). (51)

and likewise for the free-flight distribution and attenuation
coefficient [9, Supplementary Section 1, Equation (68)].
Thus, we work with the conditional quantities for this proof.
First jump time. The restriction Ix,ω of the
indicator function I along the ray rx,ω is a

7Readers familiar with the derivation of exponential transport for
stochastic microparticle geometry will recognize this argument: In that
setting, the free-flight distribution describes the distance to the first collision
with a microparticle. If microparticle locations are independent, then count-
ing collisions is a Poisson process, and the distance to the first collision is an
exponential random variable. In the stochastic solid geometry setting, we re-
place collisions with 0 → 1 transitions, and the assumption of independent
particle locations with the Markovianity assumption of Equation (11).

continuous-time discrete-space (binary) stochastic
process. Then, the conditional free-flight distance
t∗x,ω ≡ max{t ∈ [0,∞) : Vx,ω(t) = 1 | Ix,ω(0) = 0}
equals the first jump time Jx,ω ≡
min{t ∈ [0,∞) : Ix,ω(t) = 1 | Ix,ω(0) = 0} of this
process; that is, the distance travelled along the ray until the
first 0 → 1 transition of Ix,ω, or equivalently until we first
move from outside to inside the opaque solid [42, Section
2.2]. Consequently, the conditional free-flight distribution
pffx,ω equals the probability density function of Jx,ω .
Markov property. From Equation (7), exponential trans-
port requires that the conditional free-flight distance t∗x,ω,
and thus the first jump time Jx,ω, be exponential random
variables. This is equivalent to the process Ix,ω being Marko-
vian, that is, satisfying Equation (11) [42, Section 2.6].
Transition coefficients and generator matrix. The Markov
property implies that we can associate with the process Ix,ω
a generator matrix [42, Section 2.8]:

Qx,ω(t) ≡
[
−σ01

x,ω(t) σ01
x,ω(t)

σ10
x,ω(t) −σ10

x,ω(t)

]
, (52)

where σ01
x,ω and σ10

x,ω are nonnegative transition rates. The
transition rate σ01

x,ω is the rate of the exponential distribution
of the first jump time Jx,ω, and thus we can relate it to the
conditional free-flight distribution as:

pffx,ω(t) = σ01
x,ω(t) exp

(
−
∫ t

0

σ01
x,ω(s) ds

)
. (53)

Analogously, the transition rate σ10
x,ω is the rate of the ex-

ponential distribution of the first jump time for 1 → 0 tran-
sitions (moving from inside to outside the opaque solid).
Comparing Equations (7) and (53), we see that the transition
rate σ01

x,ω is the restriction of the attenuation coefficient σ
along the ray rx,ω . Even though we need only σ01

x,ω and not
σ10
x,ω for exponential transport, our proof characterizes both.

Kolmogorov equations. To proceed, we will use the tran-
sition probabilities of the process Ix,ω for all i, j ∈ {0, 1}:

P
ij

x,ω(t) ≡ Pr(Ix,ω(t) = j | Ix,ω(t) = i |), (54)

and the corresponding transition probability matrix:

Px,ω(t) ≡

[
P
00

x,ω(t) P
01

x,ω(t)

P
10

x,ω(t) P
11

x,ω(t)

]
. (55)

Because Ix,ω is Markovian, this matrix satisfies the Kol-
mogorov forward equation [42, Theorem 2.8.2]:

dPx,ω

dt
(t) = Px,ω(t) ·Qx,ω(t). (56)

To proceed, we will derive a version of Equation (56) that
uses the unconditional probability matrix:

Px,ω(t) ≡
[
Pr(Ix,ω(t) = 0)
Pr(Ix,ω(t) = 1)

]
=

[
vx,ω(t)
ox,ω(t)

]
. (57)

Using marginalization, we can relate Px,ω and Px,ω as:

Px,ω(t) = Px,ω(t)
⊤ ·Px,ω(0). (58)

Differentiating with respect to distance, we have:

dPx,ω

dt
(t) =

dPx,ω

dt
(t)

⊤ ·Px,ω(0). (59)

Using the Kolmogorov forward equation (56):

dPx,ω

dt
(t) = Qx,ω(t)

⊤ ·Px,ω(t)
⊤ ·Px,ω(0). (60)

Lastly, using Equation (58), we arrive at what we term the
unconditional Kolmogorov equation:

dPx,ω

dt
(t) = Qx,ω(t)

⊤ ·Px,ω(t). (61)

Relating ray to local quantities. An important property
of the unconditional Kolmogorov equation (61) is that it is
local, that is, it uses quantities defined at only one point,
rx,ω(t). In particular, even though our derivation so far has
considered a ray starting at point x and traveling at direction
ω, Equation (61) requires knowledge of only the direction
of the ray not its history (origin x or distance t).

We will use this property to rewrite Equation (61) in terms
of local quantities. We associate with every point x ∈ R3

and direction ω ∈ S2 the local transition rates σ01(x,ω)
and σ10(x,ω), generator matrix

Q(x,ω) ≡
[
−σ01(x,ω) σ01(x,ω)
σ10(x,ω) −σ10(x,ω)

]
, (62)

and unconditional probability matrix

P(x) ≡
[
v(x)
o(x)

]
. (63)

It follows that we can relate ray to local quantities as:

σ01
x,ω(t) = σ01(rx,ω(t),ω), (64)

σ10
x,ω(t) = σ10(rx,ω(t),ω), (65)

Qx,ω(t) = Q(rx,ω(t),ω), (66)

Px,ω(t) = P(rx,ω(t)). (67)

From Equations (7), (53) and (64), we recognize the lo-
cal transition rate σ01(x,ω) as the attenuation coefficient
σ(x,ω). Additionally, for any quantity (∗):

d(∗)x,ω
dt

(t) = ω · ∇x(∗)(rx,ω). (68)

Local form of the Kolmogorov equation. Using the cor-
respondences between ray and local quantities in Equa-
tions (64)–(68), we can rewrite the unconditional Kol-
mogorov equation Equation (61) in local form:

ω · ∇xP(x) = Q(x,ω)
⊤ ·P(x). (69)

Expanding Q and P from Equations (62) and (63), and using
o(x) = 1−v(x), we arrive at a scalar equation that we term
the local form of the unconditional Kolmogorov equation:

ω · ∇ v(x) =

− v(x)σ01(x,ω) + (1− v(x))σ10(x,ω). (70)

Exponential transport requires that Equation (70) hold for
rays passing through point x along any direction ω. In
particular, if we consider a ray in direction −ω, we arrive at:

− ω · ∇ v(x) =

− v(x)σ01(x,−ω) + (1− v(x))σ10(x,−ω). (71)

Enforcing reciprocity. At any point x and di-
rection ω, Equations (70) and (71) provide two
linear constraints on the four transition rates
σ01(x,ω), σ01(x,−ω), σ10(x,ω), σ10(x,−ω) as func-
tions of the vacancy v(ω) and its directional derivative.
Enforcing reciprocity provides an additional linear constraint
through the requirement of Equation (8):

σ01(x,ω) = σ01(x,−ω). (72)

Equations (70)–(72) form an underdetermined linear system
on the four transition rates that, after requiring nonnegativity
for the transition rates, admits the family of solutions:
σ01(x,ω)
σ01(x,−ω)
σ10(x,ω)
σ10(x,−ω)

 =

ω·∇ v(x)+τ(x,ω)(1−v(x))

v(x)
ω·∇ v(x)+τ(x,ω)(1−v(x))

v(x)
2ω·∇ v(x)+τ(x,ω)(1−v(x))

1−v(x)

τ(x,ω)

, if ω · ∇ v(x) ≥ 0,

−ω·∇ v(x)+τ(x,ω)(1−v(x))

v(x)
−ω·∇ v(x)+τ(x,ω)(1−v(x))

v(x)

τ(x,ω)
−2ω·∇ v(x)+τ(x,ω)(1−v(x))

1−v(x)

, if ω · ∇ v(x) < 0,

(73)

where τ(x,ω) = τ(x,−ω) ≥ 0 is a free variable. We can
verify this solution by computing the range and null space
of the linear system of Equations (70)–(72). Focusing on
the attenuation coefficient σ ≡ σ01, we can write succinctly:

σ(x,ω) = σ(x,−ω) =

|ω · ∇ v(x)|+ τ(x,ω)(1− v(x))

v(x)
. (74)

Enforcing reversibility. Equation (74) includes the free
variable τ whose value we cannot resolve by enforcing only
exponential transport (i.e., exponential free-flight distribu-
tions) and reciprocity. We can determine the value of τ by
considering the following: For any two points x and y, Equa-
tion (70) allows computing the vacancy v of one point from

that of the other, by integrating along the linear segment
connecting the two points. As the two vacancies correspond
to probabilities of the same underlying random field I, we
should arrive at consistent results whether we integrate in
the direction from x towards y, or in the reverse direction
from y towards x. Concretely, using the ray notation:
1. In one direction, we start at rx,x→y(0) = x with initial

condition vx,x→y(0) = v(x), and use Equation (70) to
integrate vx,x→y(t) with respect to t along the ray until
we reach rx,x→y(∥y − x∥) = y. The integration result
should be vx,x→y(∥y − x∥) = v(y).

2. In the reverse direction, we start at ry,y→x(0) = y
with initial condition vy,y→x(0) = v(y), and use Equa-
tion (70) to integrate vy,y→x(t) with respect to t along
the ray until we reach ry,y→x(∥y − x∥) = x. The inte-
gration result should be vy,y→x(∥y − x∥) = v(x).

We term this property reversibility,8 as it corresponds to
enforcing consistency between the process Ix,ω(t) and its
directional reverse Ix,−ω(t). Reversibility along all rays is
necessary for the underlying indicator function I to represent
a solid, as otherwise views of this solid from different rays
would have inconsistent geometry. From Equation (70), re-
versibility holds only if the right-hand side of this equation
is proportional to the vacancy v(x). In turn, from Equa-
tion (73), this is only true if τ(x,ω) ∝ v(x)/1−v(x). Setting
τ(x,ω) := 0 produces the minimal transition rates that guar-
antee reversibility. Then, Equation (74) simplifies to:

σ(x,ω) = σ(x,−ω) =
|ω · ∇ v(x)|

v(x)
. (75)

This concludes the proof.

F.2. Stochastic implicit geometry

We now prove Proposition 7.

Proof. Equation (25) follows from the definitions of the
vacancy function and the indicator function relative to the
implicit function in Definition 6:

v(x) = Pr(I(x) = 0) (76)
= Pr(G(x) > 0) (77)
= 1− cdfG(x)(0) (78)
= 1−Ψ(−s f(x)) (79)
= Ψ(s f(x)), (80)

where in the last step, we used the assumption that Ψ is
symmetric. Equation (24) is a consequence of the property
o(x) = 1− v(x). Lastly, Equation (26) follows by combin-
ing Equations (15) and (25), and the property that the PDF
ψ is the derivative of the CDF Ψ. This concludes the proof.

8This property is different from the usual notion of time reversibility in
continuous-time Markov processes [42, Section 3.7].

We close this subsection by adapting Proposition 7 to the
case of a spatially varying scale s(x). This case is required
for adaptive shell representations [64] and stochastic Poisson
surface reconstruction [52] (Appendix A). Equations (24)
and (25) remain unchanged:

o(x) = Ψ(−s(x) f(x)), (81)
v(x) = Ψ(s(x) f(x)). (82)

Combining Equations (15) and (82) results in:

σ∥(x)=
ψ(s(x) f(x))∥s(x)∇ f(x)+∇s(x) f(x)∥

Ψ(s(x) f(x))
. (83)

F.3. Density for logistic distribution

Lastly, we prove Equation (28). This equation follows easily
from Equation (26) using the properties of the logistic CDF:

ψlogistic(s) ≡
dΨlogistic

ds
(s) (84)

= Ψlogistic(s) · (1−Ψlogistic(s)) (85)
= Ψlogistic(s) ·Ψlogistic(−s). (86)

	. Introduction
	. Volumetric light transport background
	. Stochastic opaque solids
	. Conditions for exponential transport
	. Anisotropy
	. Stochastic implicit surfaces

	. Relationship to prior work
	. Experimental evaluation
	. Conclusion
	. Volumetric representation of point clouds
	. Global illumination representation
	. Relationship to other prior work
	. Implementation details
	. Additional quantitative results
	. Proofs
	. Exponential transport in opaque solids
	. Stochastic implicit geometry
	. Density for logistic distribution

