EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams
—Supplementary Material—

Christen Millerdurai'-?

I'MPI for Informatics, SIC

This supplementary document first provides detailed in-
formation about our datasets in Section 1. Section 2 dis-
cusses the architecture of EE3D and the real-time imple-
mentation of our framework. Next, we offer in Section 3
a thorough evaluation of our method alongside competing
approaches on the test-set of EE3D-S and conduct an abla-
tion study to analyse various dataset training strategies. We
also show visualisations of the predictions generated by our
method, along with intermediate representations such as hu-
man body masks, confidence maps, and 2D joint heatmaps.
Please check our video for more visualisations'.

1. Dataset Details
1.1. EE3D-S (Synthetic)

Given the difficulty of capturing a large amount of training
data for our egocentric setting, we create a synthetic dataset,
EE3D-S for pre-training our method. We generate EE3D-S
by rendering sequences of human motions using a virtual
replica of our HMD. For each motion sequence, we first fit
the 3D human model SMPL [8] to the egocentric observa-
tions of the HMD wearer. Subsequently, we animate the hu-
man model by sampling from the CMU MoCap dataset [1].
Next, we obtain RGB frames and human body masks by
rendering the scene from the viewport of the virtual HMD.
Additionally, the 3D body joint positions of the wearer are
obtained by transforming the SMPL body joint positions
in the world coordinate frame to the coordinate frame of
the HMD. Finally, the rendered RGB frames are passed to
VID2E [6] which converts an RGB frame sequence to an
event stream, resulting in the EE3D-S dataset. To repre-
sent background events within the event stream generation
process, we model the background by randomly selecting
images from the LSUN dataset [14].

Scene Modelling. Following Xu et al. [13], we build our
dataset on top of the large-scale synthetic human dataset,
SURREAL [12] using Blender [3]. SMPL [8] provides
the proxy geometry of the HMD wearer, and body textures

lhttps ://www.youtube.com/watch?v=jatNHOs_k_E

Hiroyasu Akada'
Diogo Luvizon! Christian Theobalt!

Jian Wang!
Vladislav Golyanik!
2Saarland University, SIC

are randomly sampled from the texture set provided by the
SURREAL dataset. The background is modelled with a
26m? sized plane with textures randomly sampled from the
LSUN dataset [14]. We illuminate the scene with four point
light sources with random positions within a five-meter ra-
dius from the HMD to create variously illuminated scenes.
Human Animation. The motions of the 3D human model
are sampled from the CMU MoCap [1] dataset. While
generating events, it is essential to ensure that VID2E has
enough temporal information from the motion sequence, as
highlighted in Gehrig et al. [6]. Hence, we sample the mo-
tions at high frame rates. Therefore, the SMPL body param-
eters obtained from SURREAL are linearly interpolated to
sample motions at 480Hz.

Rendering and Event Stream Generation. We render the
scenes using the fish-eye camera from the virtual replica of
the HMD. The position of the fish-eye camera is obtained by
offsetting the nose vertex position of the SMPL body align-
ing it closely with the event camera mounted on the real
HMD, i.e. the offset is determined by visually aligning the
position of the real event camera with respect to the wearer.
To set the intrinsic parameters of the fish-eye camera, we
calibrate our real event camera using the omnidirectional
camera calibration toolbox OCamCalib [10]. The obtained
intrinsic parameters are then set for the virtual fisheye cam-
era. Due to the different head sizes and HMD movements
during its operation, the camera position with respect to the
head can change slightly. To account for this effect, we add
random perturbations to the position of the virtual fisheye
camera. We generate the RGB frames and the human body
masks using image and mist render layers in Blender’s Cy-
cles renderer [3]. The rendered RGB frames are then pro-
cessed by VID2E [6] to generate the event streams. In total,
we synthesise 946 motion sequences with 6.21 - 106 3D hu-
man poses and 1.419 - 10! events.

1.2. EE3D-R (Real)

To evaluate our method and reduce the domain gap between
synthetic and real scenarios, we collect the EE3D-R dataset.
Dataset composition. The EE3D-R dataset mainly in-

https://www.youtube.com/watch?v=jatNH0s_k_E

Figure 1. Exemplary events from EE3D-S (left), background
events (middle) and background events augmented with the events
from EE3D-S (right).

cludes regular body movements, featuring a wide range
of (natural and unrestricted) motions and inherent differ-
ences in their execution among the participants. We ask
twelve subjects—persons with different body shapes and
skin tones—to wear our HMD and perform different mo-
tions (e.g. fast) in a multi-view studio with 29 RGB cameras
recording at 50 fps. Each sequence encompasses the follow-
ing motion types: Walking, crouching, push-ups, boxing,
kicking, dancing, interaction with the environment, crawl-
ing, sports and jumping. In the sports category, participants
perform specific activities—playing basketball, participat-
ing in tug of war and playing golf. Meanwhile, in the inter-
action with the environment category, the subjects perform
actions such as picking up objects from a table, sitting on a
chair, and moving the chair. We obtain in total 4.64 - 105
poses spanning ~155 minutes.

Human Body Mask Generation. The human body mask
is generated in two steps. First, we track an SMPL mesh on
the wearer of the HMD using open-source software Easy-
MoCap [5]. Subsequently, we take the tracked SMPL mesh,
transform it into the local coordinate system of the HMD,
and then project it onto the egocentric view.

1.3. Event Augmentation

Motions and data recorded in the multi-view studio would
not allow satisfactory generalisation to some in-the-wild
scenes with different backgrounds. Hence, we propose
an event-wise augmentation technique for the background
events and apply it to EE3D-S and EE3D-R; see Fig. 1.

We capture sequences of both outdoor and indoor scenes
without humans with a handheld event camera i.e., back-
ground event stream. The event-wise augmentation aug-
mentation is done in two steps. First, we convert the back-
ground event stream to LNES frames, each represented as
Lgp with a time window of size 7. Now, we take the
LNES frame Lq and its corresponding human segmenta-
tion mask from either EE3D-S or EE3D-R. We perform
element-wise multiplication between Lp and the inverse
of the human segmentation mask, resulting in La. The
inverted human segmentation mask functions as the back-
ground mask, effectively removing the human. Finally,
we perform element-wise addition of L s with Lg, which
serves as the input to our network.

Segmentation Decoder

$q
¥ 64x48x1
>

8x6>|<1 92,
16x12x128
|
32x2/|+x64

64x48x32

—

—>

Encoder

Heatmap Decoder

>

Lq
256x192x2

128x96x16
64x48x32

16x12x1 28’
‘ 16x12x128

Figure 2. Network architecture of the Encoder (bottom left),
Heatmap Decoder (bottom right) and Segmentation Decoder (top).

2. Implementation Details
2.1. Architectures

The Encoder, Heatmap Decoder, and Segmentation De-
coder are constructed using Blaze blocks [2]; see Fig. 2.
The Confidence Decoder and Heatmap-to-3D (HM-to-3D)
Lifting Block are built using standard convolution filters.

The Confidence Decoder is a four-layer fully convolu-
tional neural network. In each convolution layer, filters with
a kernel size of three are utilised, followed by the PReLU
activation function [7]. We apply appropriate padding to
maintain the spatial dimensions at each layer of the net-
work, hence the output of the network has the same dimen-
sions as the input of the network.

The HM-to-3D Lifting block as shown in Fig. 3 is a
six-layer network with three convolution layers and three
dense layers. Each convolution layer consists of filters with
a kernel size of four, followed by batch normalisation and
RELU activation function. Subsequently, we perform aver-
age pooling and flatten the features outputted by the convo-
lution layers. Finally, these features are passed to the dense
layers to estimate the positions of the joints, denoted as J.

2.2. Real-time Inference

3D Viewer. Our method runs locally on the laptop housed
in the backpack. We visualise the results using a separate
device running a 3D viewer [5]. The predictions generated
by our method are transmitted to the 3D viewer through net-
work sockets. Note that the data transmission causes a slight
lag in the visualisations, especially during complex and fast
motions for which the pose update frequency is very high.
Temporal Stability. We reduce the jitter generated by our
method for real-time inference with the 1€ filter [4]. For a
fair comparison, the same procedure is also performed for
all the methods we evaluate.

Confidence Decoder

Sq © & SFCI
B4x48x1 | X | @ | @ % 64x48x1
S g -

3 53 3

HM-to-3D Lifting Block

<>

Hq SRR
64x48x16 _ 2| | |3
|

~

Figure 3. The network architecture of the Confidence Decoder
(top) and Heatmap-to-3D (HM-to-3D) lifting block (bottom).

3. Additional Experiments

MPJPE | PA-MPJPE |

Tome et al. [11] 172.14 124.62
Rudneyv et al. [9] 217.05 136.05
Xuetal [13] 196.39 99.07
EventEgo3D (Ours) 124.85 92.58

Table 1. Quantitative Evaluation on EE3D-S.

Evaluation on EE3D-S. Table 1 quantitatively evaluates
our approach and competing methods on EE3D-S. In this
experiment, all the methods are pre-trained on EE3D-S and
fine-tuned on EE3D-R. We then compare the methods on
the test set of EE3D-S. Overall, our method achieves the
lowest MPJPE, outperforming Tome et al. [11] and Xu et
al. [13] by 27.47% and 36.42% on MPIJPE, respectively.
Rudnev et al. [9] perform the worst in our testing achieving
an MPJPE of 217.05mm.

Ablation on Dataset Training Strategy. Table 2 sum-
marises the quantitative evaluation of our method on the
EE3D-R dataset using different training strategies. Train-
ing our method solely on EE3D-S without fine-tuning on
EE3D-R yields the poorest performance. Pre-training our
method on EE3D-S and subsequently fine-tuning it on
EE3D-R results in a lower MJPJE (denoted as “Ours w/o

Aug”) compared to training our method exclusively on
EE3D-R (denoted as “Ours with EE3D-R”). Specifically,
this approach improves the MJPJE by 2.16%. Further-
more, augmenting the events with background data (refer
to Sec. 1.3) in conjunction with fine-tuning leads to the best
MIPIJE of 107.30mm.

Additional Visualisations. We provide additional visuali-
sations for our method, showcasing intermediate represen-
tations produced by each module (refer to Table 3). The
input frame, denoted as Eq, is computed based on the cur-
rent LNES frame L, and the previous input frame ﬂq_l.
The segmentation decoder first estimates the segmentation
mask, which then serves as input for the confidence de-
coder to generate the confidence map. Simultaneously, the
heatmap decoder estimates the heatmaps of the human body
joints. These heatmaps are then input into the HM-to-3D
lifting block, resulting in the regression of the 3D joint lo-
cations.

References

[1] Cmu graphics lab motion capture database. 1

[2] Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveen-

dran, Tyler Zhu, Fan Zhang, and Matthias Grundmann.

Blazepose: On-device real-time body pose tracking. arXiv

preprint arXiv:2006.10204, 2020. 2

Blender Online Community. Blender - a 3D modelling and

rendering package, Version: 2.82 (sub 7). Blender Founda-

tion, Blender Institute, Amsterdam, 2020. 1

Géry Casiez, Nicolas Roussel, and Daniel Vogel. 1€ filter:

a simple speed-based low-pass filter for noisy input in inter-

active systems. In SIGCHI Conference on Human Factors in

Computing Systems, 2012. 2

EasyMoCap - Make human motion capture easier. https:

//github.com/zju3dv/EasyMocap, 2021. 2

Daniel Gehrig, Mathias Gehrig, Javier Hidalgo-Carrid, and

Davide Scaramuzza. Video to events: Recycling video

datasets for event cameras. In Computer Vision and Pattern

Recognition (CVPR), 2020. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In International Confer-

ence on Computer Vision (ICCV), 2015. 2

Matthew Loper, Naureen Mahmood, Javier Romero, Ger-

ard Pons-Moll, and Michael J. Black. SMPL: A skinned

multi-person linear model. ACM Trans. Graphics (Proc.

SIGGRAPH Asia), 34(6):248:1-248:16, 2015. 1

Viktor Rudneyv, Vladislav Golyanik, Jiayi Wang, Hans-Peter

Seidel, Franziska Mueller, Mohamed Elgharib, and Christian

Theobalt. Eventhands: Real-time neural 3d hand pose esti-

mation from an event stream. In International Conference

on Computer Vision (ICCV), 2021. 3

[10] Davide Scaramuzza, Agostino Martinelli, and Roland Sieg-
wart. A toolbox for easily calibrating omnidirectional cam-
eras. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2006. 1

—

3

—

[4

—

[5

—

[6

—_

[7

—

[8

—

[9

—

https://github.com/zju3dv/EasyMocap
https://github.com/zju3dv/EasyMocap

Method Metric Walk Crouch Pushup Boxing Kick Dance Inter. withenv. Crawl Sports Jump Avg. (o)

Ours with EE3D.s MPIPE 32617 319.17 239.92 254.62 318.03 274.43 279.79 32740 31749 31691 297.39 (32.29)
PA-MPIPE 180.83 173.56 13447 130.56 181.62 14633 162.28 162.90 153.61 154.39 158.05 (17.76)
Ours with EE3p.r MPIPE 8721 16380 10140 13250 "111.68° 9872~ 10207 13571 107.53 10627 114.69 (22.73)
PA-MPIPE 69.16 110.14 7892 103.18 9430 77.49 72.59 104.63 8175 8275 87.49(14.48)
Ours ;V/’O’A;g’ ~ MPIPE 8002 127.62 97.68 11992 118.06 13022 10727 9378 13221 11537 11221(17.25)
PA-MPIPE 60.04 9574 7633 9554 89.71 103.02 88.22 7407 9472 8577 86.32(12.82)
ouws 1 MPIPE ~ 70.88 16384 97.88 13657 10372 8887 10319 10971 101.02 9732 107.30 (25.78)
PA-MPIPE 5211 9948 7553 10466 86.05 71.96 70.85 7794 7782 8017 79.66 (14.83)

Table 2. Numerical comparisons on the EE3D-R dataset with different dataset training strategies. Fine-tuning our method on EE3D-R after
pre-training on EE3D-S yields an improvement of 62.26% on the MPJPE.

[11] Denis Tome, Patrick Peluse, Lourdes Agapito, and Hernan
Badino. xr-egopose: Egocentric 3d human pose from an hmd
camera. In International Conference on Computer Vision
(ICCV),2019. 3

[12] Giil Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. In Computer Vision and
Pattern Recognition (CVPR), 2017. 1

[13] Weipeng Xu, Avishek Chatterjee, Michael Zollhoefer, Helge
Rhodin, Pascal Fua, Hans-Peter Seidel, and Christian
Theobalt. Mo?Cap? : Real-time mobile 3d motion cap-
ture with a cap-mounted fisheye camera. IEEE Transactions
on Visualization and Computer Graphics, 25(5):2093-2101,
2019. 1,3

[14] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-
iong Xiao. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop. arXiv preprint
arXiv:1506.03365, 2015. 1

Input frame Eq Human Body Mask Confidence map Heatmap Prediction

.
»
4
LAY

=

|

\=1

\

4

39 4 3 o
4 313

Table 3. Additional visualisations of EE3D along with the visualisations of input frames I:q, human body masks, confidence maps,
heatmaps and the 3D predictions. The 3D poses depicted in green represent the ground truth, while those in red signify the predictions by
our method. The colour scheme for the input frames L, human body masks and confidence maps can be found in Fig. 3 of the main paper.

5

	. Dataset Details
	. EE3D-S (Synthetic)
	. EE3D-R (Real)
	. Event Augmentation

	. Implementation Details
	. Architectures
	. Real-time Inference

	. Additional Experiments

