
Building Optimal Neural Architectures using Interpretable Knowledge

Supplementary Material

7. Supplementary Materials
We provide additional information and materials, e.g., pre-
dictor training, details of how ImageNet performance met-
rics are obtained, and further elaborate on our experimental
setup, results and insights into Stable Diffusion U-Nets.

7.1. Predictor Training Setup

We implement AutoBuild using PyTorch [30] and PyTorch-
Geometric [9]. We use a GATv2 [3] GNN backbone with
a hidden size of 32. There are 4 message-passing layers
for PN/MBv3 and 6 message-passing layers for SDv1.4.
Message-passing layers include a ReLU activation and
residual skip-connections between hop layers.

The FE-MLP applies a separate MLP to each node fea-
ture category to generate a single scalar per category. The
only activation in the FE-MLP is an abs operation which
is applied to the concatenation of each node feature scalar
to produce the 0-hop embedding. Finally, graph embed-
dings at all hop-levels are generating using mean aggrega-
tion (Eq. 2).

We train AutoBuild using Equation 4 (differentiable
SRCC provided by [2]) with a batch size of 128. We use a
AdamW [21] optimizer with an initial learning rate of 1e−4
and weight decay of 1e−5. Also, we standardize prediction
labels using the sample mean and variance computed from
the training data split.

The number of epochs differs depending on task and the
number of labeled samples we have. For the classification
results in Sec. 5.1, we train for 200 epochs with 3k labeled
architectures (6k to generate Fig. 3) at a training speed of
1 epoch/GPU second. For panoptic segmentation results in
Sec. 5.2, we train for 300 epochs using the 1.3k ‘pseudo-
labeled’ MBv3 architectures from AIO-P [27], while com-
paring against Pareto frontier generated from the 118 fully
fine-tuned MBv3 architecture samples they provide. Fi-
nally, for SDv1.4, we have 68 samples and train each pre-
dictor (AutoBuild and Exhaustive Search) for 1000 epochs.

7.2. Search Space Sizes

We provide formal mathematics to quantify the number of
architecture modules present in each search space, as well
as the size of each original macro-search space. Also, we
calculate the size of the reduced search spaces used by
AutoBuild-NAS and the Layer-Insight [25] from Sec. 5.1.

Unique Architecture Modules. PN and MBv3 both use
MBConv blocks as layers. There are 9 unique MBConv
configurations formed as the cartesian product of kernel
sizes k ∈ {3, 5, 7} and expansion ratios e ∈ {3, 4, 6}.

Stages 1-5 of PN and MBv3 contain 2-4 layers, for a to-
tal of 92 + 93 + 94 = 81 + 729 + 6561 = 7371 unique 2-4
modules. This is sufficient for MBv3.

PN has an additional 6th stage which always contain
only a single layer, giving it 9 additional subgraphs for 7380
in total. However, in practice when enumerating over PN ar-
chitecture modules and performing NAS, we merge the 5th
and 6th stage for simplicity, meaning we consider 3-5 node
subgraph modules of which there are 93+94+95 = 66339.

Mathematically Calculating Search Space Size. Let u
represent a given stage, lu be the number of layers in stage
u, and Bu be the set of unique layers available at stage u.
Each stage is a subgraph that contains lu ∈ [lmin

u , lmax
u]

layers, each sampled from Bu with replacement. The maxi-
mum number of unique stage subgraphs is therefore |Su| =∑lmax

u

lu=lmin
u

|Bu|lu . Likewise, the total size of the search
space is the cartesian product of all subgraphs across all
stages,

∏umax

u=umin |Su|.
For MBv3, these calculations work out to be |Su| =∑4
lu=2 9

lu = 7371, for u ∈ U = {1, 2, .., 5} as previ-
ously computed. The overall size is therefore

∏5
1 7371 ≈

2.18 × 1019. For PN, this number is multiplied by 9 due
to the additional 6th stage, for approximately 1.96 × 1020

total architectures. It is infeasible if not intractable to con-
sider all of these architectures, even using a predictor, yet
by contrast the number of architecture module subgraphs
we can consider is substantially smaller such that we can
enumerate over them all.

Quantifying Reduced Search Spaces. Also, the search
space can be greatly reduced by limiting the size of Su, the
number of possible subgraphs per stage. We reduce |Su| by
directly selecting a subset of architecture module subgraphs
using AutoBuild in a data-driven manner. Specifically, for
each target equation in the upper row of Fig. 5, we select
the top-K module subgraphs per unit where K = 25. There
are a maximum of P = 4 target equations we consider at
a time, for a total of (4 × 25)5 = 1010 architectures, still
significantly less than the original search space by a factor
of over 2× 109.

By contrast, Layer-Insight reduce |Bu| and lmax
u by

hand using human expert knowledge. For ‘MBv3-GPU’,
they restrict lmax

u = 3 for stages 2, 4 and 5 and remove
2 MBConv blocks from consideration at all, resulting in a
search space containing more than 4.6×1014 architectures.
Likewise, for ‘MBv3-CPU’, they only constrain lmax

u = 3
for stages 1, 2 and 3, which only reduces the search space
to 2.9× 1016 architectures. Finally, ‘MBv3-NPU’ removes

Table 2. Distribution statistics from 2.7k (90% of 3k) random MBv3 architectures. N (µh
m, σh

m) is the distribution of embedding norms for
an accuracy predictor, while N (µy

u,l, σ
y
u,l) is the distribution of ImageNet top-1 accuracies [%] per (u, l). Note: l = m+ 1.

N (µh
m, σh

m) N (µy
u,l, σ

y
u,l)

l m = l − 1 u = 1 u = 2 u = 3 u = 4 u = 5

1 N (2.24, 0.39) – – – – –
2 N (13.83, 7.14) N (76.77, 0.82) N (76.77, 0.81) N (76.69, 0.85) N (76.42, 0.75) N (76.61, 0.79)
3 N (27.53, 8.67) N (77.00, 0.79) N (76.98, 0.78) N (77.02, 0.76) N (77.05, 0.70) N (76.96, 0.76)
4 N (40.94, 9.73) N (77.08, 0.76) N (77.12, 0.78) N (77.13, 0.74) N (77.41, 0.62) N (77.26, 0.73)

k = 7 from consideration so |B|u = 6, giving a search
space of size of ∼9 × 1015. All of these are substantially
larger than the reduced search spaces of AutoBuild.

7.3. Distribution Shift Statistics

We elaborate on how to calculate the statistics from Sec-
tion 4.2, i.e., N (µh

m, σh
m) and N (µy

u,l, σ
y
u,l). We also pro-

vide some empirical measurements to show the necessity of
these calculations.

Recall that N (µh
m, σh

m) is the distribution of node em-
bedding norms learned by the GNN predictor, where h
refers to a hidden GNN embedding and m parameterizes
the hop-level. For each hop-level m, the statistics of this
distribution are calculated after predictor training by a dou-
ble for-loop that enumerates over every graph in the training
set, and even node within each graph.

By contrast, N (µy
u,l, σ

y
u,l) is the distribution of target la-

bels yG for graphs that have an architecture module sub-
graph with l nodes positioned at stage u. These statistics are
calculated by enumerating over the training dataset. More-
over, these statistics are specific to sequence-graphs and cal-
culating them requires a sufficient number of graphs per
(u, l) tuple1.

We tabulate these statistics for an MBv3 accuracy pre-
dictor in Table 2. Note how the values of µh

m and σh
m tend

to grow monotonically with m. Also note how the accuracy
distribution increases with l, yet differs for each stage u.

7.4. Computation of ImageNet Metrics

We describe the evaluation protocol details for retrieving
accuracy and latency of for all architecture AutoBuild con-
structs in the top row of Fig. 5 or found by search in the bot-
tom row of Fig. 5. Specifically, we obtain accuracy by splic-
ing architecture subnets from the corresponding OFA [4]
supernetwork and directly evaluating on ImageNet, which
takes about 1 V100 GPU minute per architecture.

We obtain latency measurements using predictors. These
pure latency predictors are distinct from those mentioned in
Figs. 2 & 3 and the AutoBuild-NAS predictors described in
Sec. 7.1 which we use to reduce the search space, but they
are similar in design. Specifically, our latency predictors

1We have around 1k for Sec. 5.1 and around 430 for Sec. 5.2.

train on the OFA-MBv3/PN samples that [25] provide2 for
500 epochs with a batch size of 32 to minimize the loss

LLat = MAE(yG , y
′
G) + (1− ρ(yG , y

′
G)), (6)

where MAE is the Mean Absolute Error and yG is the
ground-truth latency of architecture G. Also different from
the AutoBuild predictors, the latency predictors use k-
GNN [28] message-passing layers with a hidden size of
128 and LeakyReLU activations. Finally, latency predictors
compute graph embeddings using ‘sum’ aggregation [47]
rather than the ‘mean’ aggregation of Eq. 2.

7.5. NAS Evolutionary Algorithm Implementation

We use the random mutation-based EA provided by [25].
This algorithm randomly samples an initial pool of archi-
tectures and establishes a population of the most Pareto-
optimal architectures found. The algorithm then iteratively
mutates architectures in the frontier by creating a predefined
number of mutated architectures per iteration, and merging
them into the existing Pareto frontier. The algorithm re-
peats for a set number of iterations. We calculate the total
evaluation using eval budget = initial archs + iter ×
eval per iter. We set a total evaluation budget of 250 by
setting initial archs = 50, iter = 4 and eval per iter =
50 for each experimental setup.

By default, the algorithm performs NAS by mutating the
layers of OFA-PN/MBv3 networks, e.g., adding, removing
or altering the MBConv choice for a single layer per stage.
Their code implements Layer-Full by default but also in-
cludes the search space restrictions required to run Layer-
Insight, both of which we compare to in Fig. 5. We extend
the code to provide support for Stage-Full and AutoBuild-
NAS, both of which uses a different mutation mechanism
where entire stages are changed at once rather than single
layers. Note that both layer-wise and stage-wise mutation
are equivalent in terms of evaluations. That is, whether a
mutation changes one layer or one stage, the resultant ar-
chitecture is still different from the original and must be
evaluated separately to obtain a gauge performance.

250k/15k/5k unique architectures for the GPU/CPU/NPU devices with
latency measurements for three input image sizes: {1922, 2082, 2242}

Root:
ConvK1 263

136/816

Add 262

ConvK1 261
408/136

Add 236

Mul 260

Mul 250

Div 259

Add 210

ConvK 184
576/136

ConvK1 209
816/136

ConvK1 235
576/136

Mul 234

... ...

Layer
Layer

Layer
Layer

Layer

Induced Subgraph C
ontext Spans M

ultiple Layers

Inv
ert

ed
 bo

ttle
ne

ck

ch
an

ne
l s

ize
 re

lat
ed

siz
e/p

erf
orm

an
ce

Figure 8. Annotated illustration of the 4-hop subgraph which
achieved the highest score when training a AutoBuild accuracy
predictor for PN/MBv3 using the ‘IR’ format. Specifically, this
subgraph comes from a large MBv3 architecture and is rooted at
the first convolution in an MBConv block with e = 6. We annotate
each node by operation type and topological sort index. Convolu-
tion nodes are further labeled with ‘Input Channel/Output Chan-
nel’ numbers. Individual nodes are color-coded to match with the
general area of the larger network they belong to.

7.6. Additional FE-MLP Results

We elaborate on why the operation type with the highest
FE-MLP score in the right subfigure of Fig. 3 is ‘Add’. Fur-
ther, we also provide additional FE-MLP results for PN and
MBv3 that could not be included in the main manuscript
due to space constraints.

Importance of ‘Add’. Both PN and MBv3 use long resid-
uals to connect the start and end of MBConv blocks. These
residual connections play a key role in network accuracy
improvement and the add operator is often used to im-
plement such skip-connections. As such, with sufficient
hop-levels, subgraphs which incorporate add operations can
span large sections of the overall network in order to accrue
information from critical nodes that are far apart. For ex-

ample, consider the MBv3 graph in Figure 8. This graph
contains several hundred nodes, yet the highest-ranked sub-
graph is rooted at ‘Conv 263’. This is a pointwise con-
volution3 which has input and output channels of 136 and
816, respectively, meaning that its channel expansion ra-
tio is e = 816/136 = 6, the highest possible e value in
PN/MBv3. Since the input channel size is 136, ‘Conv 263’
is located in Stage 4 of MBv3, where changes in the num-
ber of layers/block choice can have a great impact on perfor-
mance (see Fig. 5 of [25]). Additionally, it is directly down-
stream from ‘Add 262’, which receives input from ‘Conv
261’ which has e = 3 and ‘Add 236’. ‘Add 236’ is fed by
‘Conv 235’ that has e = 4 and ‘Add 210’, in turn fed by
‘Conv 209’ (e = 6) and ‘Conv 184’ (e = 4)4.

This long chain of operation spans almost 80 node in-
dices by topological sort, and the inclusion of ‘Div 259’
signals that this subgraph is part of an MBv3 network, not
PN. However, more importantly, the subgraph captures mul-
tiple pointwise convolutions which control the channel ra-
tios in PN/MBv3. The number of channels directly affects
the number parameters and FLOPs required to perform a
forward pass - both of which are highly correlated with ac-
curacy performance [25]. Of the 5 pointwise convolutions
captured in the subgraph, only 1 of them has e = 3, the
worst option, while the remaining either have e = 4 or
e = 6. Thus, not only does the subgraph belong to an
MBv3 network, but the operations within it correspond to
MBConv layers that perform heavy computations and like-
wise, help attain high performance. Since the formation of
this subgraph fully depends on the residual ‘Add’ opera-
tions, that operation type is assigned the highest FE-MLP
score in Fig. 3.

FE-MLP Sequence Graph Scores. The FE-MLP of Auto-
Build provides a direct mean of measuring the scalar values
for each choice of node feature, such as discrete kernel size,
and interpreting these values as importance scores. Higher
values correspond to higher target values through Eq. 4. PN
and MBv3 use MBConv blocks as layers, with a total of 9
types spanning kernel sizes k ∈ {3, 5, 7} and channel ex-
pansion ratios e ∈ {3, 4, 6}. We further enrich the node
features by including the network input resolution and two
position-based node features that encode a node stage u and
layer l location. PN architectures contain 6 stages. Stages
1 to 5 contain 2 to 4 layers, while stage 6 always contains 1
layer. We perform an analysis of the feature importance for
the PN and MBv3 macro-search spaces. Specifically, scores
provided in the following figures stem from the same exper-

3The depthwise convolutions with k ∈ {3, 5, 7} are located in the
middle of a block. The subgraph in Fig. 8 does not contain any of them.

4‘Conv 184’ is not preceded by an add node as it belongs to the first
layer in the stage (‘Conv 261’/‘Add 262’ is part of the 4th and final layer
of the 4th MBv3 stage, while ‘Conv 263’ is the first node in the 5th stage.),
where downsampling occurs, and thus, no residual connection is included.

3 5 7
k

0.0

0.2

0.4

Sc
or

e

MBConv Kernel Size
Accuracy
GPU Latency
CPU Latency
NPU Latency

3 4 6
e

0.0

0.2

Sc
or

e

MBConv Expand Ratio

192 208 2240

10

20

30

Sc
or

e

Input Image Resolution

1 2 3 40.00

0.25

0.50

0.75

Sc
or

e

Layer [Positional Encode]

1 2 3 4 5 60.00

0.25

0.50

0.75

Sc
or

e

Stage [Positional Encode]

Figure 9. FE-MLP 0-hop feature importance scores for PN. We
train a AutoBuild predictor using the ‘custom’ graph representa-
tion which provides 5 feature categories: Kernel, Expand, Resolu-
tion, Layers and Stages.

iments performed to generate Fig. 2 in the main manuscript.
Figures 9 and 10 illustrates the range of feature scores for

the PN and MBv3 search spaces, respectively. Specifically,
we consider accuracy, GPU latency, CPU latency and NPU
latency metrics. We note that in both cases AutoBuild as-
signs disproportionate importance to kernel size 7 for NPU
latency, which aligns with [25] who found that k = 7 dis-
proportionately increases that metric. In other cases, kernel
size, expansion ratio, and resolution generally follow lin-
ear trends or are mostly constant, e.g., expansion ratio e for
GPU latency on both search spaces, and PN CPU latency.
Also, for PN, the resolution feature overall is essential when
determining CPU latency, moderately important for accu-
racy and NPU latency, but has little to no effect in deter-
mining GPU latency. Yet, for MBv3, the resolution feature
is emphasized more for accuracy than CPU latency.

In terms of positional features, we observe that a near-
zero weight is universally assigned for l = 0. Intuitively,
this makes sense as the first layer always exists, while the
3rd and 4th layers are assigned higher values due to being
optional. In [25], architectures with stages containing 3 or
more layers had higher GPU and CPU latency, especially
if these layers were allocated to stages 2, 3 and 5, which
obtained high scores across all metrics. Finally, for PN,
stage u = 6 is assigned a near-zero weight as it always
exists and always contains 1 layer.

7.7. Additional Panoptic Segmentation Results

Additionally, we also investigated the performance of Auto-
Build on the ProxylessNAS macro-search space for Panop-
tic Segmentation. Much like MBv3, AIO-P [27] also pro-

3 5 7
k

0.0

0.2

0.4

Sc
or

e

MBConv Kernel Size
Accuracy
GPU Latency
CPU Latency
NPU Latency

3 4 6
e

0.0

0.2

Sc
or

e

MBConv Expand Ratio

192 208 2240

10

20

Sc
or

e

Input Image Resolution

1 2 3 40.00

0.25

0.50

0.75

Sc
or

e

Layer [Positional Encode]

1 2 3 4 50.00

0.25

0.50

0.75

Sc
or

e

Stage [Positional Encode]

Figure 10. FE-MLP 0-hop feature importance scores for MBv3.
Same setup as Fig. 9.

171 172 173 174 175 176
FLOPs [1e9]

35
36
37
38
39

CO
CO

 P
Q

PN Panoptic Seg.

AIO-P Fine-tuned Architectures
AutoBuild y = PQ 2 FLOPs

Figure 11. Results comparing AutoBuild PN architectures to the
PQ-FLOPs Pareto frontier of fine-tuned architectures from [27].

vide sets of fully fine-tuned and ‘pseudo-labeled’ architec-
ture samples. As such, we apply AutoBuild to PN, using the
same procedure detailed in Sec. 5.2. The only difference is
we differ the target label equations as the PN PQ-FLOPs
Pareto frontier differs from that of MBv3.

Figure 11 illustrates our findings for a single target equa-
tion, y =

√
PQ−2

√
FLOPs. While we are able to outper-

form the existing Pareto frontier, we originally crafted this
target equation to focus on the center of the Pareto frontier.
Specifically, we crafted the equation by considering three
points on the Pareto frontier (Fig. 11 grey line):
• The ‘high’ point: (FLOPs, PQ) = (175.1, 37.9)
• The ‘ideal’ point: (FLOPs, PQ) = (172.9, 37.4).
• The ‘low’ point: (FLOPs, PQ) = (171.3, 35.7).
The idea is to craft an equation where the ‘ideal’ point
receives a higher target than the ‘high’ and ‘low’ points.
Specifically, using y =

√
PQ − 2

√
FLOPs, the predictor

targets would be -20.31, -20.18 and -20.20 for the ‘high’,
‘ideal’ and ‘low’ points respectively. While the ‘ideal’ point
has the highest target, it is closer to the ‘low’ point than
the ‘high’ point, which influenced the architecture subgraph
components found by AutoBuild. As such, and as stated in
Sec. 5.1, improving on the target design scheme is definitely
a direction for future work.

7.8. Stable Diffusion 1.4 Inpainting Background

We provide additional details and experimental results re-
garding the Inpainting task described in Section 5.3 and
elaborate on the AutoBuild macro-search space. Further,
we provide illustrations of the best architectures found by
AutoBuild and insights on the search space.

In the Inpainting task, we mask out certain parts of an
image and rely on Stable Diffusion models to re-create the
missing content. The baseline Inpainting model consists of
two sub-modules: a VQ-GAN [8] and a U-Net. The VQ-
GAN is responsible for encoding/decoding images in the
RGB domain to/from the latent domain. The U-Net is re-
sponsible for removing noises from the input image. The
training of Diffusion models involves a forward diffusion
process, where Gaussian noises are added to the input image
in a step-wise fashion until the entire image becomes pure
noise. And a reverse diffusion process, where the U-Net
model attempts to remove the added noise and iteratively
recovers the original image. During inference, the U-Net
generates new content from pure Gaussian noise.

In our experiments we use the open-source Stable Dif-
fusion v1.4 [33] VQ-GAN and U-Net model, but we only
optimize the U-Net architecture. To train the U-Net model,
the original image, the masked image and the mask are first
encoded into latent space by either the VQ-GAN encoder
or interpolation. Next, random Gaussian noise is added,
and the U-Net is trained to recover the noise-free image in
the latent space. An overview of our Inpainting model is
illustrated in Figure 12. The U-Net model can be further
dissected into input, middle and output branches. The input
and output branches contains multiple stages with residual
connections in-between (e.g., the output of stage 2 from the
input branch will be added to the output of stage 2 from
the output branch). Each stage further partitions into Resid-
ual Convolution and Attention Blocks. At the end of input
stages 1, 2 and 3, there are downsampling blocks. Con-
versely, at the end of output stages 2, 3 and 4, there are
upsampling blocks. The downsampling/upsampling blocks
adjust the latent tensor height, width and channels (HWC).
Figure 13 provides a compact view of the SDv1.4 U-Net.

7.9. AutoBuild for FID Minimization

We consider two distinct SDv1.4-based search spaces and
fine-tuning regimes. The first of which pertains to all results
listed and illustrated in Sec. 5.3 and is further detailed in this
subsection. Here, the objective is to minimize the FID. The
second search space aims to find Pareto-optimal architec-
tures where a secondary hardware metric, e.g., latency, is
taken into account. All results and discussion pertaining to
the second search space can be found in Sec. 7.10.

FID Minimization Search Space & Evaluation. Our
search space is designed around the SDv1.4 U-Net. We al-

U-Net

VQ-GAN Encoder

VQ-GAN Decoder

Image
1x3x512x512

Interpolation

Mask
1x1x512x512

Masked Image
1x3x512x512

Encoded
Noisy Image
1x3x128x128

Encoded
Masked Image
1x3x128x128

Interpolated
Mask

1x1x128x128

Concat along channel dim

Inpainted
Output Image
1x3x512x512

Timestep t ~[0,999]

Noise

Figure 12. Overview of the Stable Diffusion 1.4 Inpainting model
used in our experiments. Note that the U-Net model is our main
focus for NAS-based optimization. The U-Net often need to run
for multiple steps during inference.

ways remove the attention blocks from Stage 2, and then
configure the rest of the U-Net according to several search-
able attributes, given below:

• U-Net global channel size Cm: Baseline has 256 chan-
nels, our searchable candidates are [128, 192, 256].

• Stage channel multipliers: Baseline has multipliers [1,
2, 3, 4] corresponding to channels 256, 512, 768, 1024
for stage 1, 2, 3, 4 of the input/output branches. We add
7 other combinations as searchable candidates (e.g., [1, 1,
2, 4], [1, 3, 4, 2]).

• Number of residual blocks: Baseline has 2 residual
blocks per stage for the input branch and 3 for the out-
put branch. We allow the optional removal of 1 residual
block for any number of stages.

• Number of attention blocks: We allow the optional re-
moval of all attention blocks in stages 3 and/or 4.

An illustration of the search space choices is provided by
Figure 14. To represent candidate architectures as sequence
graphs, we encode the following node features:
• Operation type, which is one of: ‘Residual Convolu-

tion’, ‘Attention’, ‘Downsample’ or ‘Upsample’.
• Channel size. Note: To instantiate an SDv1.4 architec-

ture variant as a functional neural network, the global
channel size Cm must be consistent across all nodes.
Also, the channel multiplier values for nodes in an in-
put stage and its corresponding output stage must be the

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

R=Residual Convolution, A=Attention, d=downsample, u=upsample

C=256 C=1024C=512 C=768 C=1024 C=1024 C=768 C=512 C=256
Input

Stage 1
Output
Stage 1

Input
Stage 3

Input
Stage 2

Output
Stage 2

Output
Stage 3

Output
Stage 4

Middle
Stage

Input
Stage 4

Figure 13. Structure of the baseline U-Net model for Inpainting. E.g., ‘0,1’ means the first block of the first stage.

C1 = Cm C2 = Cm x [1, 4] C1 = CmC2 = Cm x [1, 4]C3 = Cm x [1, 4]C3 = Cm x [1, 4] C4 = Cm x [1, 4] C4 = Cm x [1, 4]Cmid = C4

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

Cm = {128, 192, 256}

Figure 14. Illustration of the searchable attributes in the SDv1.4 U-Net. Long residual connections are removed from this drawing but still
present in all candidate architectures. The attention blocks in Stage 2 are always removed. We do not alter the middle stage but note that its
channels must match that of the stage 4 input/output modules. We allow for a global channel value Cm ∈ {128, 192, 256}. The number of
channels in stages 2-4 is equal to Cm times a multiplier in [1, 2, 3, 4], while the channels of Stage 1 are always Cm. We can also remove
attention blocks from the input/output stages 3 and 4 independently of each other, as well as remove at least one residual convolution block
per input/output stage. Blocks with dotted borders denote optional layers, while blocks bound by solid lines are mandatory.

same, e.g., if the multiplier for Input Stage 2 is 3, the mul-
tiplier for Output Stage 2 must also be 3.

• Positional embedding describing which section (input,
middle, or output) and stage a node is located in.
After combining the searchable parameters and apply-

ing the constraints on Cm and stage-channel multipliers, we
are left with a search space containing approximately 800k
U-Net candidates. To evaluate a candidate, we first inherit
weights from the original SDv1.4, then fine-tune for 20k
steps on the Places365 [48] training set, which contains 1.7
million images. We use 2 Nvidia Tesla V100 GPUs with
32GB of VRAM each to fine-tune, with a batch size of 7
per GPU. Then we compute its FID on a held-out Places365
validation subset containing 3k images where the Inpainting
masks are predefined and consistent across different archi-
tecture evaluations. The whole process can take between 1-
2 days depending on candidate architecture. We fine-tune
68 architectures for AutoBuild and Exhaustive Search to
learn from.

Prediction with <100 Samples. We provide additional de-
tails on how we use AutoBuild to select high-performance
architectures. Specifically, each predictor in the ensemble
trains for 1000 epochs with batch gradient descent, e.g., the
batch size is equal to the size of the training set. The GNN
predictor contains 6 message passing layers to accommo-
date output stages 2, 3 and 4 which can span up to 7 nodes.
Since we only have 68 samples and the number of hops can
vary between 0 and 6, we do not have enough data to com-
pute the statistics required for Eq. 5. Instead, we normalize
subgraph scores to a normal distribution N (0, 1), then take
the top-5 subgraphs per input/output stage5, dividing K = 5
between different subgraph sizes. For example, when se-
lecting subgraphs for Stage 1, which can have 1-2 hops, we

5We ignore the Middle Stage from consideration and simply select the
channel figuration that will match with the Stage 4 Input/Output subgraphs.

Table 3. Distribution and range of feature categories for SDv1.4
generated by the AutoBuild predictor that attained the highest FE-
MLP 0-hop SRCC.

Feature Distribution Range

Operation N (0.53, 0.21) [0.00, 0.77]
Channels N (0.48, 0.04) [0.38, 0.53]
Section Idx. N (0.52, 0.60) [0.02, 1.30]
Stage Idx. N (0.43, 0.22) [0.26, 0.79]

will select two 1-hop subgraphs and three 2-hop subgraphs,
while for Output Stages 2, 3 and 4, which can span 2-6 hops,
we select the best subgraph for each hop-size.

The top-4 architectures are then constructed by finding
the top-4 subgraph combinations whose sum of scores is the
highest, provided they abide by the aformentioned channel
constraints to ensure network functionality. Figures 15 and
16 illustrate the top-4 architectures found by AutoBuild and
Exhaustive Search, respectively, annotated with FID.

SDv1.4 Search Space Insights. We provide some addi-
tional search space insights from the FE-MLP of the Au-
toBuild predictor which achieved the highest 0-hop SRCC
(0.6464). Table 3 quantifies the distribution and range of
importance scores for each feature category. First, we note
that the feature which attains the highest value is Section In-
dex. Specifically, input stages are assigned a high score of
1.3, output stages are assigned 0.15 while the Middle Stage
is assigned a low value of 0.08, notable as the best archi-
tecture found (AutoBuild Architecture 4) allows attention
in every input stage it can. In terms of Stage Index, im-
portances are given in descending order as Stage 4 = 0.79,
Stage 2 = 0.41, Stage 3 = 0.26 and Stage 1 = 0.26 which
emphasizes the input/output stages closest to the middle, as
well as Stage 2, where attention is part of the original model
but not permitted in our search space.

Operation importance scores are as follows, in descend-

C1 = 256 C2 = 1024 C1 = 256C2 = 1024C3 = 1024C3 = 1024 C4 = 1024 C4 = 1024Cmid = 1024

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

AutoBuild Architecture 1. FID = 10.27

C1 = 256 C2 = 1024 C1 = 256C2 = 1024C3 = 1024C3 = 1024 C4 = 1024 C4 = 1024Cmid = 1024

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

AutoBuild Architecture 2. FID = 10.22

C1 = 256 C2 = 1024 C1 = 256C2 = 1024C3 = 1024C3 = 1024 C4 = 1024 C4 = 1024Cmid = 1024

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

AutoBuild Architecture 3. FID = 10.34

C1 = 256 C2 = 1024 C1 = 256C2 = 1024C3 = 1024C3 = 1024 C4 = 1024 C4 = 1024Cmid = 1024

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

AutoBuild Architecture 4. FID = 9.96 [Best architecture found]

Figure 15. Architectures found by AutoBuild, annotated with FID performance.

C1 = 256 C2 = 1024 C1 = 256C2 = 1024C3 = 1024C3 = 1024 C4 = 1024 C4 = 1024Cmid = 1024

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

Exhaustive Search Architecture 1. FID = 10.52

C1 = 256 C2 = 1024 C1 = 256C2 = 1024C3 = 1024C3 = 1024 C4 = 1024 C4 = 1024Cmid = 1024

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

Exhaustive Search Architecture 2. FID = 11.42

C1 = 256 C2 = 1024 C1 = 256C2 = 1024C3 = 1024C3 = 1024 C4 = 1024 C4 = 1024Cmid = 1024

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

Exhaustive Search Architecture 3. FID = 10.29 [Best architecture found by Exhaustive Search]

C1 = 256 C2 = 1024 C1 = 256C2 = 1024C3 = 1024C3 = 1024 C4 = 1024 C4 = 1024Cmid = 1024

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

R
0,1

R
0,2

R
0,d

R
3,1

A
3,1

R
3,2

A
3,2

R
4,1

A
4,1

R
4,2

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
8,1

R
8,2

R
8,3

Exhaustive Search Architecture 4. FID = 11.03

Figure 16. Architectures found by Exhaustive Search, annotated with FID performance.

C3 = 1024

C2 = 1024

R
1,1

A
1,1

R
1,2

A
1,2

R
1,d

C2 = 1024

R
7,1

A
7,1

R
7,2

A
7,2

R
7,3

A
7,3

R
7,u

R
6,1

A
6,1

R
6,2

A
6,2

R
6,3

A
6,3

R
6,u

C3 = 1024

R
2,1

A
2,1

R
2,2

A
2,2

R
2,d

C4 = 1024

R
3,1

A
3,1

R
3,2

A
3,2

C4 = 1024

R
5,1

A
5,1

R
5,2

A
5,2

R
5,3

A
5,3

R
5,u

C1 = 256

R
8,1

R
8,2

R
8,3

C1 = 256

R
0,1

R
0,2

R
0,d

Input Stages Output Stages

Figure 17. Best AutoBuild SDv1.4 input/output subgraphs.

ing order: Upsample = 0.77, Residual Convolution = 0.63,
Attention = 0.33 and Downsample = 0.00. This may be a
way of compensating for the high score assigned to nodes
in the input stages while not placing importance on Out-
put Stage 1, as it is the only output stage that lacks an up-
sampling operation. Finally, channel size is correlated with
importance score: more channels is better, as evidenced by
all architectures in Figs. 15 and 16 setting Cm = 256 and
using the highest-possible multipliers in stages 2, 3 and 4.

Finally, Figure 17 illustrates the best input and output ar-
chitecture module subgraphs found by AutoBuild for our
SDv1.4 macro-search space.

7.10. AutoBuild for Pareto-optimal U-Nets

In addition to the search space and AutoBuild results
present in Sections 5.3 and 7.9, we designed a second search
space and training regime. The objective of this search
space and experiments was to find smaller SDv1.4 U-Net
variants that achieved Pareto-optimal performance by min-
imizing the FID and a hardware-friendliness metric, e.g.,
GPU latency.

Hardware-aware Search Space & Evaluation. The sec-
ond U-Net search space is a subset of the first, only con-
taining approximately 100k architectures compared to the
800k in the original. We now iterate the changes made to
differentiate the second search space:
• U-Net global channel size Cm: Fixed to always be 256.
• Stage channel multipliers: We fix these so that the num-

ber of channels is never more than the original SDv1.4
U-Net, e.g., Stage 4 can choose from multipliers in

[1, 2, 3, 4], but Stage 2 can only choose from [1, 2].
• Number of residual/attention blocks: Unchanged.

These changes produce a new search space where the
original SDv1.4 U-Net is the largest architecture. In terms
of fine-tuning and evaluation, we still use the Places365
dataset. Specifically, we use the same 3k masked im-
ages from the validation set to generate FID scores as be-
fore. However, FID for architectures in the first and second
search spaces are not strictly comparable as we increased
the number of training steps to 30k, up from 20k before.

We fine-tune and evaluate 90 random architectures from
the second search space. In addition to measuring the FID
score, we also consider three hardware metrics: U-Net in-
ference latency in an Nvidia V100 GPU, the number of
Floating Point Operations (FLOPs) required for a forward
pass, and the number of U-Net parameters.

Evaluation and Results. Our experimental procedure is
largely unchanged from Sections 5.3 and 7.9 in that we still
consider an Exhaustive Search baseline method. How-
ever, this time we evaluate two variants of AutoBuild on the
second search space, AutoBuild Unconstrained and Au-
toBuild Constrained. We differentiate these methods by
how they account for module subgraphs with different sizes
when constructing high-performance architectures:
• AutoBuild Constrained follows the procedure from

Sec. 7.9, ensuring that a variety module subgraphs with
different hop sizes are selected when composing the top-
K set for a given stage.

• AutoBuild Unconstrained does not follow this proce-
dure. Instead, we just normalize all subgraph scores for a
given stage into N (0, 1) and then take the top subgraphs
per stage.
Figure 18 illustrates the resultant Pareto frontiers for a

trio of hardware metrics. Note how in every case Auto-
Build is able to consistently find better U-Net architectures
that push beyond the original Pareto frontier formed by the
90 random training architectures. In addition, the architec-
tures found by AutoBuild are generally much closer to the
‘Optimal Training Arch’, which is the training architecture
that maximizes the target objective, than those found by Ex-
haustive Search.

When comparing AutoBuild Constrained and AutoBuild
Unconstrained, we find that the ‘Constrained’ version can
more consistently construct architectures that surpass the
original Pareto frontier, e.g., on the V100 GPU. A downside
of this approach is that architectures found by AutoBuild
Constrained actually deviant further away from the Optimal
Training Architecture than those constructed by AutoBuild
Unconstrained, e.g., in the FLOPs and parameter frontiers.
Finally, also common to the FLOPs and parameter Pareto
frontiers, is not uncommon for both of these methods to
construct the same architectures.

25 30 35 40 45 50 55
Latency [ms]

10

15

20

25

FI
D

Tesla V100
Training Architectures
Optimal Training Arch
Exhaustive Search
AutoBuild Unconst.
AutoBuild Const.

(a) y = −FID − Latency

50 100 150 200 250 300
Params [1e6]

10

15

20

25

FI
D

Number of Parameters
Training Architectures
Optimal Training Arch
Exhaustive Search
AutoBuild Unconst.
AutoBuild Const.

(b) y = −FID −
Params

200

150 200 250 300 350 400 450
FLOPs [1e9]

10

15

20

25

FI
D

Floating Point Operations
Training Architectures
Optimal Training Arch
Exhaustive Search
AutoBuild Unconst.
AutoBuild Const.

(c) y = −FID −
FLOPs

400

Figure 18. FID vs. Hardware-friendliness Pareto frontiers (lower
values are better for both) for the second SDv1.4 search space
(Sec. 7.10). Subfigure captions refer to the target equations
that AutoBuild and Exhaustive Search aim attempt to maximize.
‘Training Architectures’ refers to the 90 random fine-tuned U-
Nets, while the ‘Optimal Training Arch’ gold star indicates the
training architecture that maximizes the target equation.

