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6. Pre-training Objective

The proposed DriveWorld for 4D driving pre-training en-
compasses the following five components:

BEVRepresentationModel : bt ∼ qϕ(bt | ot)
Stochastic StateModel : st ∼ qϕ(st | ht, at−1, ot)

DynamicTransitionModel : st ∼ pθ(st | ht, ât−1)

Static PropagationModel : b̂ ∼ pθ(b̂ | b
′
)

ActionDecoder : ât ∼ pθ(ât | ht, st)

3DOccupancyDecoder : ŷt ∼ pθ(ŷt | ht, st, b̂).

(4)

The joint probability distribution for DriveWorld is:

p(h1:T , s1:T , y1:T+L, a1:T+L) =

T∏
t=1

p(ht, st|ht−1, st−1, at−1)p(yt, at|ht, st, b̂)

L∏
k=1

p(hk, sk|hT , sT , ak−1)p(yk, ak|hT , sT , b̂),

(5)

with

p(ht, st|ht−1, st−1, at−1) = p(ht|ht−1, st−1)p(st|ht, at−1), (6)

p(yt, at|ht, st) = p(yt|ht, st, b̂)p(at|ht, st), (7)

p(yk, ak|hT , sT ) = p(yk|hT , sT , b̂)p(ak|hT , sT ). (8)

Given that ht is deterministic [22, 27, 97], we
have p(ht|ht−1, st−1) = δ(ht − fθ(ĥt−1,MLN(st−1))).
Consequently, to maximize the marginal likelihood of
p(y1:T+L, a1:T+L), it is imperative to infer the latent vari-
ables s1:T . This is achieved through deep variational infer-
ence, wherein we introduce a variational distribution qH,S

defined and factorized as follows:

qH,S ≜ q(h1:T , s1:T |o1:T , y1:T+L, a1:T+L)

=
T∏

t=1

q(ht|ht−1, st−1)q(st|o≤t, a<t).
(9)

We parameterise this variational distribution with a neu-
ral network with weights ϕ. By formalizing the above pro-
cess as a generative probabilistic model, we can obtain a

variational lower bound on the log evidence:

logp(y1:T+L, a1:T+L) ≥ L(y1:T+L, a1:T+L; θ, ϕ)

≜
T∑

t=1

Eh1:t,s1:t∽q(h1:t,s1:t|o≤t,a<t)[ log p(yt|ht, st, b̂)︸ ︷︷ ︸
past occupancy loss

+ log p(at|ht, st)︸ ︷︷ ︸
past action loss

] +

L∑
k=1

EhT ,sT∽q(hT ,sT |o≤T ,a<T )

[log p(yT+k|hT , sT , b̂)︸ ︷︷ ︸
future occupancy loss

+ log p(aT+k|hT , sT )︸ ︷︷ ︸
future action loss

]

−
T∑

t=1

Eh1:t−1,s1:t−1∽q(h1:t−1,s1:t−1|o≤t−1,a<t−1)

[DKL(q(st|o≤t, a<t) ∥ p(st|ht−1, st−1))︸ ︷︷ ︸
posterior and priormatching KL loss

].

(10)

In Eqn. 10, we model q(st|o1:t, a1:t−1) as a Gaussian
distribution, allowing for the closed-form computation of
the Kullback-Leibler (KL) divergence. The modelling of
actions as a Laplace distribution and 3D occupancy labels
as a categorical distribution results in L1 and cross-entropy
losses, respectively.

7. Lower Bound Derivation

Next, we will derive the variational lower bound in Eqn. 10.
Let qH,S ≜ q(h1:T , s1:T |o1:T , y1:T+L, a1:T+L) be the vari-
ational distribution and p(h1:T , s1:T |a1:T+L, y1:T+L) be
the posterior distribution. The Kullback-Leibler divergence
between these two distributions is:

DKL(q(h1:T , s1:T |o1:T , y1:T+L, a1:T+L)

∥ p(h1:T , s1:T |y1:T+L, a1:T+L))

= Eh1:T ,s1:T∽qH,S
[log

q(h1:T ,s1:T |o1:T ,y1:T+L,a1:T+L)

p(h1:T ,s1:T |y1:T+L,a1:T+L)
]

= Eh1:T ,s1:T∽qH,S

[log
q(h1:T ,s1:T |o1:T ,y1:T+L,a1:T+L)p(y1:T+L,a1:T+L)

p(h1:T ,s1:T )p(y1:T+L,a1:T+L|h1:T ,s1:T )
]

= log p(y1:T+L, a1:T+L)−
Eh1:T ,s1:T∽qH,S

[log p(y1:T+L, a1:T+L|h1:T , s1:T )]+

DKL(q(h1:T , s1:T |o1:T , y1:T+L, a1:T+L) ∥ p(h1:T , s1:T )).
(11)

Since DKL(q(h1:T , s1:T |o1:T , y1:T+L, a1:T+L) ∥
p(h1:T , s1:T |y1:T+L, a1:T+L)) ≥ 0, we derive the follow-



ing evidence lower bound:

log p(y1:T+L, a1:T+L) ≥
Eh1:T ,s1:T∽qH,S

[log p(y1:T+L, a1:T+L|h1:T , s1:T )]

−DKL(q(h1:T , s1:T |o1:T , y1:T+L, a1:T+L) ∥ p(h1:T , s1:T )).
(12)

The two terms of this lower bound can be calculated sep-
arately. Firstly:

Eh1:T ,s1:T∽qH,S
[log p(y1:T+L, a1:T+L|h1:T , s1:T )]

= Eh1:T ,h1:T∽qH,S
[log

T∏
t=1

p(yt|ht, st, b̂)p(at|ht, st)

L∏
k=1

p(yk|hT , sT , b̂)p(ak|hT , sT )]

=

T∑
t=1

Eh1:t,s1:t∽q(h1:t,s1:t|o≤t,a<t)[log p(yt|ht, st, b̂)p(at|ht, st)]

+

L∑
k=1

EhT ,sT∽q(hT ,sT |o≤t,a<t)

[log p(yT+k|hT , sT , b̂)p(aT+k|hT , sT )].
(13)

Secondly, with q(ht|ht−1, st−1) = p(ht|ht−1, st−1), we
obtain:

DKL(q(h1:T , s1:T |o1:T , y1:T+L, a1:T+L) ∥ p(h1:T , s1:T ))

= DKL(q(h1:T , s1:T |o1:T , a1:T−1) ∥ p(h1:T , s1:T ))

=

∫
h1:T ,s1:T

q(h1:T , s1:T |o1:T , a1:T−1)

log
q(h1:T , s1:T |o1:T , a1:T−1)

p(h1:T , s1:T )
dh1:T ds1:T

=

∫
h1:T ,s1:T

q(h1:T , s1:T |o1:T , a1:T−1)

log[
T∏

t=1

q(ht|ht−1, st−1)q(st|o≤t, a<t)

p(ht|ht−1, st−1)p(st|ht−1, st−1)
]dh1:T ds1:T

=

∫
h1:T ,s1:T

q(h1:T , s1:T |o1:T , a1:T−1)

log[
T∏

t=1

q(st|o≤t, a<t)

p(st|ht−1, st−1)
]dh1:T ds1:T .

(14)

Thus:

DKL(q(h1:T , s1:T |o1:T , a1:T−1) ∥ p(h1:T , s1:T ))

=

∫
h1:T ,s1:T

T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t, a<t)

(

T∑
t=1

log
q(st|o≤t, a<t)

p(st|ht−1, st−1)
)dh1:T ds1:T

=

∫
h1:T ,s1:T

T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t, a<t)

(log
q(s1|o1)
p(s1)

+

T∑
t=2

log
q(st|o≤t, a<t)

p(st|ht−1, st−1)
)dh1:T ds1:T

= Es1∽q(s1|01)[log
q(s1|o1)
p(s1)

]

+

∫
h1:T ,s1:T

(
T∏

t=1

q(ht|ht−1, st−1)q(st|o≤t, a<t))

(
T∑

t=2

log
q(st|o≤t, a<t)

p(st|ht−1, st−1)
)dh1:T ds1:T

= DKL(q(s1|o1) ∥ p(s1))

+

∫
h1:T ,s1:T

(

T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t, a<t))

(log
q(s2|o1:2, a1)
p(s2|h1, s1)

+

T∑
t=3

log
q(st|o≤t, a<t)

p(st|ht−1, st−1)
)dh1:T ds1:T

= DKL(q(s1|o1) ∥ p(s1))

+ Eh1,s1∽q(h1,s1|o1 [DKL(q(sq |o1:2, a1) ∥ p(s2|h1, s1))]

+

∫
h1:T ,s1:T

(

T∏
t=1

q(ht|ht−1, st−1)q(st|o≤t, a<t))

(

T∑
t=3

log
q(st|o≤t, a<t)

p(st|ht−1, st−1)
)dh1:T ds1:T .

(15)

Through recursive application of this process to the sum
of logarithms indexed by t, we obtain:

DKL(q(h1:T , s1:T |o1:T , a1:T−1) ∥ p(h1:T , s1:T ))

=

T∑
t=1

Eh1:t−1,s1:t−1∽q(h1:t−1,s1:t−1|o≤t−1,a<t−1)

[DKL(q(st|o≤t, a<t) ∥ p(st|ht−1, st−1))].

(16)



(a) BEV Features before Prompt (b) Prompt with Mapping  (c) Prompt with Forecasting   

Figure 5. Visualization of BEV feature maps when prompting with
different tasks.

Finally, we achieve the intended lower bound:

log p(y1:T+L, a1:T+L)

≥
T∑

t=1

Eh1:t,s1:t∽q(h1:t,s1:t|o≤t,a<t)[log p(yt|ht, st, b̂) + p(at|ht, st)]

+

L∑
k=1

EhT ,sT∽q(hT ,sT |o≤T,a<T )[log p(yT+k|hT , sT , b̂)

+ p(aT+k|hT , sT )]

−
T∑

t=1

Eh1:t−1,s1:t−1∽q(h1:t−1,s1:t−1|o≤t−1,a<t−1)

[DKL(q(st|o≤t, a<t) ∥ p(st|ht−1, st−1))].
(17)

8. Dataset
The nuScenes dataset [5] is a large-scale autonomous driv-
ing dataset that consists of 700, 150, and 150 sequences for
training, validation, and testing, respectively. The scenes
are recorded in Boston and Singapore, encompassing a di-
verse array of weather and lighting conditions, as well as
various traffic scenarios.

The OpenScene dataset [11] is the largest 3D occupancy
dataset, covering a wide span of over 120 hours of occu-
pancy labels collected in various cities, from Boston, Pitts-
burgh, Las Vegas to Singapore. OpenScene provides a se-
mantic label for each foreground grid and incorporates the
motion information of occupancy flow that helps bridge the
gap between decision-making and scene representation. we
utilize both semantic occupancy labels and occupancy flow
for the supervision of 4D pre-training.

The dense 3D occupancy ground truth is derived by
fusing multiple frames of LiDAR point clouds [57, 69].
This approach offers a more comprehensive representation
of objects, encompassing details about occluded areas, in
contrast to single-frame point clouds. In the future, it
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Figure 6. Graphical model of Memory State-Space Model. Deter-
ministic states are denoted by squares, while stochastic states are
represented by circles. The observed states are highlighted in grey
for clarity. Solid lines represent the generative model, while dotted
lines depict variational inference.

may become feasible to directly reconstruct 3D occupancy
ground truth from autonomous driving videos using tech-
niques such as NeRF [2, 55], 3D Gaussian Splatting [36],
and MVS [80, 81, 89].

9. Task Prompt

During fine-tuning, we add task prompts to BEV maps be-
fore each downstream task’s decoder. For 3D object de-
tection, the task prompt is “The task is for 3D object de-
tection of the current scene.” For planning, the task prompt
is “The task involves planning with consideration for both
the current and future scenes.” The encoder network of task
prompts is transferred to downstream tasks, and fine-tuning
includes downstream task prompts. This enables different
downstream tasks with semantic connections to decouple
task-aware features. While basic embeddings for specific
tasks are optional, large language model captures complex
semantic relationships, providing a nuanced representation
of task prompts. Additionally, the strong generalization
abilities of such models enhance performance across a wide
array of tasks when needed. However, it’s worth noting that
the current Task Prompt design is relatively simple, and the
task number for autonomous driving is limited.

In Fig. 5, we present visualizations of BEV feature
maps both before and after the integration of various task
prompts. Notably, as shown in Fig. 5 (a), the BEV feature
map based on 4D pre-training captures abundant informa-
tion from both the current and future scenes. While, for
specific downstream tasks, some information could be re-
dundant or even detrimental. We utilize task prompts to al-
leviate the effect of redundant information. In online map-
ping tasks, the feature map, guided by the task prompt, em-
phasizes the current spatio-aware information. The targets
has more accurate location information in feature map to
achieve higher precision . For motion forecasting task, the
feature map, guided by the task prompt, conserves both spa-
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Figure 7. Qualitative example of 3D occupancy predictions, for 2 seconds in the future.

tial and temporal information. The targets cover a broader
region in feature map to achieve more robust prediction.

10. Differences between RSSM and MSSM
In world model-based methods such as Dreamers [20, 22,
23] and MILE [27], the RSSM [21] is commonly employed
to learn latent variables. However, RSSM, relying on RNN
networks, may encounter challenges related to long-term in-
formation retention. In contrast, our designed Dynamics
Memory Bank in MSSM excels in modelling and preserv-
ing long-term information. RSSM compresses features into
1D tensor, while MSSM utilizes context BEV features to
reconstruct 3D scenes. Besides, MSSM separates dynamic
and static information, addressing them independently.

11. Graphical Model
In Fig. 6, we illustrate the graphical model of the pro-
posed Memory State-Space Model. The update of the de-
terministic state ht is dependent on the historical states in
Dynamics Memory Bank, facilitating the transmission of
temporal-aware features. Spatial-aware features are pre-
served through the retention of BEV feature b̂.

12. Qualitative Results
Fig. 7 presents the reconstruction of both the current and
future 3D scenes. This visual representation effectively il-
lustrates DriveWorld’s capacity for reconstructing the 3D
scene and predicting future changes, thus enhancing down-
stream task performance after 4D pre-training.
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