
Supplementary Materials for “Transferable Structural Sparse Adversarial
Attack Via Exact Group Sparsity Training”

Di Ming, Peng Ren, Yunlong Wang, Xin Feng*

School of Computer Science and Engineering, Chongqing University of Technology
Chongqing, China

diming@cqut.edu.cn, misterr 2019@163.com, ylwang@cqut.edu.cn, xfeng@cqut.edu.cn

Overview
In this supplementary material, we provide additional explanations, experiments, and analyses to support our findings. We
also provide PyTorch code, demo and pre-trained models (under untargeted and targeted attack settings with varying ℓ∞
constraints) at: https://github.com/MisterRpeng/EGS-TSSA.

Contents

A. Additional Explanation of the Generation of Structural Sparse Perturbation 1

B. Additional Explanation of the Difference between Hard and Soft Smoothness Losses 2

C. Additional Experiments 2
C.1. Discussion of Convergence Issue . 2
C.2. Discussion of Smoothness Loss . 3
C.3. Analysis of the Label Distribution of Structural Sparse Perturbation . 4
C.4. Comparison of Adversarial Examples on Image Classification . 5
C.5. Comparison of Adversarial Examples on Object Detection . 7
C.6. Comparison of Adversarial Examples on Semantic Segmentation . 7
C.7. Visualization of the Pattern of Structural Sparse Perturbation . 8
C.8. Analysis of the Distribution of Structural Sparse Perturbation . 8

A. Additional Explanation of the Generation of Structural Sparse Perturbation
Gradient Descent based Sparsification. First of all, we will show that the gradient descent based optimization algorithm
used by TSAA is incompatible with our concerned structural sparse constraint problem. Given (i, j) ∈ Gp,q , the partial
derivative of Lsparse defined in Eq. 4 w.r.t. mi,j can be computed as follows:

∂Lsparse(m)

∂mi,j
= λ1sgn(mi,j) + λ2

mi,j

||mGp,q ||2
.

Based on this, the perturbation position mi,j can be iteratively updated via gradient descent:

m
(t+1)
i,j = m

(t)
i,j − α(t) ∂Lsparse(m)

∂mi,j
,

where α(t) is the adapative learning rate for t-th iteration.

*Corresponding Author: Xin Feng

1

https://github.com/MisterRpeng/EGS-TSSA

Since partial derivatives of ℓ1-norm and group ℓ21-norm w.r.t. mi,j are mixed with each other, group sparsity w.r.t. Gp,q

cannot be obtained via gradient descent. To be specific, whenever the partial derivative of group ℓ21-norm (i.e., αλ2mi,j

||mGp,q ||2
)

updates mGp,q
to a vector with all zero values, the partial derivative of ℓ1-norm w.r.t. a certain index (i, j) ∈ Gp,q (i.e.,

αλ1sgn(mi,j)) can change the value of mi,j back to nonzero, leading to ||mGp,q
||2 > 0.

Cascaded Sparsification. In practice, it is difficult to find appropriate values of hyperparameters λ1 and λ2 that can generate
the exact group sparsity in the optimization framework of gradient descent. On the other hand, the augmented Lagrange
multiplier is the widely used method to solve multiple sparsity-induced penalties. However, the issue of convergence persists
when alternatively updating between the generator parameter (via gradient descent) and the Lagrange multiplier (via linear
update rule). Thus, the optimization problem (3) does not have the trivial solution.

For the purpose of effectively resolving this issue, we introduce an auxiliary variable ρ to decouple the optimization
between two sparsity-induced penalties, propose the masked quantization network Q to connect original variable m and
auxiliary variable ρ, and further incorporate exact k group sparsity (generated based on group feature importance) into our
end-to-end training procedure.

Overall, the generation of structural sparse perturbation is decomposed into two-step cascaded sparsification through
masked quantization network: (i) coarse-grained sparsity at the group level is guaranteed by c⊙ρ where c is the group mask
(see Eqs. 7-10), after element-wise multiplication only k groups in ρ are kept, i.e., ||m||G20 = k; (ii) fine-grained sparsity at
the pixel level is guaranteed by ℓ1 penalty ||m||1, resulting in sparse values of m in those remaining k groups, e.g., mi,j = 0,
(i, j) ∈ Gp,q , mGp,q

̸= 0S2 .

B. Additional Explanation of the Difference between Hard and Soft Smoothness Losses
Hard Smoothness Loss. Since all the trainable variables are constrained by a mask, hard smoothness loss can only learn the
structural sparsity within the group mask c:

L(hard)
smooth(ρ,m, c) = ||c⊙ ρ− c⊙m||22

= ||c⊙ (ρ−m)||22,

where pseudo labels (already quantized to 0 and 1 values) in m beyond the group mask are reset to exact zeros after element-
wise multiplication w.r.t. c.
Soft Smoothness Loss. On the contrary, soft smoothness loss has a certain freedom to learn the structural sparsity of some
positions beyond the group mask c:

L(soft)
smooth(ρ,m, c) = ||ρ− c⊙m||22

= ||c⊙ ρ+ (1− c)⊙ ρ− c⊙m)||22

= ||c⊙ (ρ−m)||22 + ||(1− c)⊙ ρ||22 + 2
(
c⊙ (ρ−m)

)T (
(1− c)⊙ ρ

)
= ||c⊙ (ρ−m)||22 + ||(1− c)⊙ ρ||22,

where the 3rd term in the 3rd row is equal to exact zero due to the complementary property between 1− c and c.
The Difference of Smoothness Losses. According to the above derivations, the explicit relation between hard and soft
smoothness losses can be obtained:

L(soft)
smooth(ρ,m, c) = L(hard)

smooth(ρ,m, c) + ||(1− c)⊙ ρ||22.

It can be seen that the soft smoothness loss is a more generalized loss term including the hard smoothness loss.
As a result, the soft smoothness loss can learn the structural sparsity not only within the group mask c via the first loss

term (same as hard smoothness loss) but also beyond the group mask c via the second loss term. Besides, in the second loss
term, only the ℓ2-norm based penalty is enforced on the elements in ρ beyond the group mask c (i.e., 1 − c), which is also
known as weight decay that can shrinkage the large values back to our predefined ranges.

C. Additional Experiments
C.1. Discussion of Convergence Issue

To achieve our expected sparse results, the corresponding values of λ1 and λ2 result in a very large overall loss L that does not
decrease effectively along with the iteration. To minimize the overall loss, the optimization focuses on reducing the number

2

of perturbation position as much as possible due to imbalanced losses. Finally, the perturbation position is not generated
properly, leading to the training failure as shown in Fig. 1.

To resolve this issue, we introduce multi-stage optimization algorithm to train the sparse attack model, which can decrease
the overall loss effectively by combining stage I training with stage II training.

0

40

80

120

160

1 101 201

O
ve

ra
ll

lo
ss

Iteration

Without stage I training With stage I training

Figure 1. Comparison of the overall loss of EGS-TSSA (Ours) via different training strategies. To be minimized directly, the overall
loss does not decrease through the training iteration. By using the multi-stage optimization algorithm, the overall loss starts to decrease
effectively and the sparse attack model can be trained properly.

C.2. Discussion of Smoothness Loss

In this section, we show adversarial examples crafted by EGS-TSSAhard and EGS-TSSAsoft , shown in Fig. 2. As can be
seen from the visualization results, the perturbations generated by the soft smoothness loss are more spread out (beyond the
constraint of group mask) than the hard smoothness loss (within the constraint of group mask).

EGS-TSSAsoftEGS-TSSAhardClean

Inception-V3

ResNet50

Figure 2. Comparison of adversarial examples crafted by EGS-TSSA (Ours) under hard and soft smoothness loss constraints. Surrogate
models are Inception-V3 (top) and ResNet50 (bottom) respectively. When constrained by the hard smoothness loss, EGS-TSSAhard

learns the structural sparse perturbation more concentrated around the group mask. Contrarily, constrained by the soft smoothness loss,
EGS-TSSAsoft learns the structural sparse perturbation with more freedom beyond the group mask. Furthermore, the sparse perturbation
generated by EGS-TSSAsoft has more structured and repetitive patterns than EGS-TSSAhard .

3

C.3. Analysis of the Label Distribution of Structural Sparse Perturbation

The classification results of all the adversarial examples are analyzed for different threat models. For surrogate models
where the generated perturbation positions are located in classification-relevant regions, such as Inception-v3, our approach
does not change this perturbation pattern. In contrast to TSAA, our EGS-TSSA achieves better top-1 label domination in
Fig. 3. For ResNet50 where the generated perturbation positions are located near the image boundary, our method changed
the perturbation pattern completely to concentrate more on classification-relevant regions. It is shown in Fig. 4 that our
adversarial examples do not attack threat models towards a single label, but towards a variety of labels. Thus, our EGS-TSSA
method is more inclined to destroy classification-relevant features in the image.

0 1000 2000 3000 4000

diamondback
brain_coral

conch
monarch

zebra
ambulance
pencil_box

garden_spider
oscilloscope
spider_web

0 1000 2000 3000 4000

garden_spider
Persian_cat

isopod
wool
purse

monitor
velvet

theater_curtain
barn_spider
spider_web

0 1000 2000 3000 4000

cuirass
cowboy_boot
electric_fan

conch
dragonfly
solar_dish

chiton
zebra

jellyfish
spider_web

0 1000 2000 3000 4000

carton
bathtub

wig
mosquito_net

hoopskirt
solar_dish

theater_curtain
garden_spider
barn_spider
spider_web

0 1000 2000 3000 4000

diamondback
garden_spider

coil
grocery

oscilloscope
tray

blower
theater_curtain

brain_coral
spider_web

(a) Inception-V3
0 1000 2000 3000 4000

brain_coral
carton

clog
tray

monitor
wallet
velvet

shower_curtain
theater_curtain

spider_web

(b) VGG16
0 1000 2000 3000 4000

maze
tray

llama
fountain

brain_coral
shower_curtain

zebra
chiton

jellyfish
spider_web

(c) ResNet50
0 1000 2000 3000 4000

carton
mosquito_net

wig
window_shade

hoopskirt
tray

shower_curtain
barn_spider

theater_curtain
spider_web

(d) DenseNet161

Figure 3. The label distribution of adversarial examples crafted by TSAA and our EGS-TSSA (the surrogate model: Inception-V3) under
the constraint of ℓ∞ = 10, where the x-axis represents the number of adversarial examples that are classified to the corresponding label
and the y-axis represents the classification labels (only top 10 labels are shown for the comparison). Red bars indicate white-box attacks
and blue bars indicate black-box attacks. In contrast to TSAA (2nd row), our EGS-TSSA method (1st row) achieves better top-1 label
domination from surrogate model to target models due to the proposed constraint of structural sparsity.

0 200 400 600 800 1000

apron
bathtub

water_bottle
sea_slug
Band_Aid

radio
ocarina
strainer
peacock
bubble

0 200 400 600 800 1000

eel
ocarina
pajama
stage

stingray
spider_web

sea_slug
strainer
umbrella
bubble

0 200 400 600 800 1000

knot
water_bottle

flute
sleeping_bag

crutch
peacock
sea_slug
bubble
ocarina
strainer

0 200 400 600 800 1000

rule
bassinet
puffer

Band_Aid
seashore
dalmatian
strainer
pajama
ocarina
sea_slug

0 500 1000 1500 2000 2500 3000 3500

iguana

rock_python

altar

typewriter_…

Indian_cobra

cowboy_boot

zebra

coral_reef

brain_coral

jigsaw_puzzle

(a) ResNet50
0 500 1000 1500 2000 2500 3000 3500

holster

sundial

tool kit

comic_book

totem_pole

manhole_cover

triceratops

shield

mask

jigsaw_puzzle

(b) VGG16
0 500 1000 1500 2000 2500 3000 3500

terrapin

cerastes

crayfish

otterhound

curly-coated_…

maze

organ

window screen

chainlink_fence

jigsaw_puzzle

(c) DenseNet161
0 500 1000 1500 2000 2500 3000 3500

white_shark

terrapin

kuvasz

solar_dish

comic_book

consomme

crampfish

borzoi

oscilloscope

jigsaw_puzzle

(d) Inception-V3

Figure 4. The label distribution of adversarial examples crafted by TSAA and our EGS-TSSA (the surrogate model: ResNet50) under the
constraint of ℓ∞ = 10, where the x-axis represents the number of adversarial examples that are classified to the corresponding label and
the y-axis represents the classification labels (only top 10 labels are shown for the comparison). Red bars indicate white-box attacks and
blue bars indicate black-box attacks. In contrast to TSAA (2nd row), our EGS-TSSA method (1st row) fails to achieve the top-1 label
domination from surrogate model to target models since the sparse perturbation pattern of ResNet50 is completely changed. However, the
number of adversarial examples crafted by EGS-TSSA in other labels becomes larger than TSAA. As a result, the sparse pattern of our
EGS-TSSA method that concentrates on classification-relevant regions has a higher transferability (see Table 1).

4

C.4. Comparison of Adversarial Examples on Image Classification

In Fig. 5, perturbations crafted by our EGS-TSSA method can blend more naturally into classification-relevant regions, thus
making adversarial examples undetectable.

E
G

S-
T

SS
A

T
SA

A
G

re
ed

yF
oo

l
C

le
an

(a) ϵ = 10

E
G

S-
T

SS
A

T
SA

A
G

re
ed

yF
oo

l
C

le
an

(b) ϵ = 255

Figure 5. Visualization of adversarial examples crafted by GreedyFool, TSAA and our EGS-TSSA (the surrogate model: ResNet50) under
the constraints of ℓ∞ = 10 and ℓ∞ = 255. As can be seen, the perturbations of our EGS-TSSA method are more structural sparse and
more imperceptible.

We further investigate adversarial examples generated by TSAA and EGS-TSSA (Ours) using different surrogate models
under the constraints of ℓ∞ = 10 and ℓ∞ = 255, respectively. In Fig. 6, TSAA fails to attack all the benign examples, but our
EGS-TSSA attacks them all successfully. Thus it can be seen that the perturbations generated by our proposed EGS-TSSA
method are more structured and more concentrated in the classification-relevant important regions.

5

EGS-TSSATSAAClean

(a) Inception-V3

EGS-TSSATSAAClean

(b) ResNet50

Figure 6. Comparison of adversarial examples crafted by TSAA and EGS-TSSA (Ours) under the constraints of ℓ∞ = 10 and ℓ∞ = 255.
Surrogate models are Inception-V3 (a) and ResNet50 (b) respectively. Due to the constraint of structural sparsity, all the above results are
attacked successfully by our EGS-TSSA method but the TSAA method fails.

6

C.5. Comparison of Adversarial Examples on Object Detection

In Fig. 7, we evaluate the performance of the proposed EGS-TSSA method on the object detection task. Compared to TSAA,
our EGS-TSSA causes the object detection model to falsely ignore more correct objects and detect more incorrect objects,
which demonstrates that our approach leads to a more severe destruction on object detection.

EGS-TSSATSAAw/o attack

Figure 7. Comparison of adversarial examples crafted by TSAA and EGS-TSSA (Ours) on the object detection task. As compared to
original detected results (see w/o attack) by the SSD300 model, our EGS-TSSA obtains lower AP and AR than TSAA.

C.6. Comparison of Adversarial Examples on Semantic Segmentation

In Fig. 8, we further verify the effectiveness of the proposed EGS-TSSA method on the semantic segmentation task. Adver-
sarial examples that are crafted by our EGS-TSSA method can severely fool the prediction of correct semantic segmentation
labels as compared to TSAA, e.g., some foreground labels are falsely predicted as the background.

EGS-TSSATSAAw/o attackx

Figure 8. Comparison of adversarial examples crafted by TSAA and EGS-TSSA (Ours) on the semantic segmentation task. As compared
to original segmented results (see w/o attack) by the FCN model, our EGS-TSSA obtains the lower mIoU than TSAA.

7

C.7. Visualization of the Pattern of Structural Sparse Perturbation

In Fig. 9, we visualize the pattern of sparse perturbations. Due to the constraint of ℓ1-norm alone, TSAA generates the sparse
perturbation globally. Clearly, our EGS-TSSA generates a more structured and sparse perturbation from the perspective of
coarse-grained and fine-grained levels.

Figure 9. Visualization of the pattern of structural sparse perturbations crafted by TSAA and EGS-TSSA (Ours). As can be seen from the
figure, our EGS-TSSA (1st column) learns not only the coarse-grained sparsity at group level but also the find-grained sparsity at pixel
level, thus generating more structured and sparse perturbations than TSAA (3rd column).

C.8. Analysis of the Distribution of Structural Sparse Perturbation

In Fig. 10, we further analyze the distribution of sparse perturbations by ranking the importance of all subgroups of GFI
and dividing them sequentially into 10 regions, each representing 10% of the entire GFI . It is obvious that the crafted
perturbation is highly overlapped with classification-relevant important regions.

Figure 10. Visualization of the distribution of structural sparse perturbations crafted by EGS-TSSA (Ours). The 1st row is the 10 regions
sequentially selected by GFI , the 2nd row is the generation of adversarial examples using each above region, and the 3rd row is the
corresponding visualization of the crafted perturbation.

8

	. Additional Explanation of the Generation of Structural Sparse Perturbation
	. Additional Explanation of the Difference between Hard and Soft Smoothness Losses
	. Additional Experiments
	. Discussion of Convergence Issue
	. Discussion of Smoothness Loss
	. Analysis of the Label Distribution of Structural Sparse Perturbation
	. Comparison of Adversarial Examples on Image Classification
	. Comparison of Adversarial Examples on Object Detection
	. Comparison of Adversarial Examples on Semantic Segmentation
	. Visualization of the Pattern of Structural Sparse Perturbation
	. Analysis of the Distribution of Structural Sparse Perturbation

