
A. Appendix

B. Additional Experimental Results
B.1. Datasets

We conduct our method evaluations on a variety of image
ND datasets, incorporating mainstream datasets like CIFAR-
10, CIFAR-100, MNIST, EMNIST-Letters, Fashion-MNIST,
SVHN, along with industrial datasets such as MVTecAD,
FGVC-Aircraft, and medical datasets like Head CT - hem-
orrhage, and ISIC 2018. For FGVC-Aircraft, Due to high
class similarity in FGVC, we randomly pick ten classes from
the entire dataset, ensuring no shared Manufacturer. The
selected classes are [91, 96, 59, 19, 37, 45, 90, 68, 74, 89].
Also for ISIC2018, It is a skin disease dataset, accessible
as task 3 of the ISIC2018 challenge. It consists of seven
classes. NV (nevus) is considered the normal class, and the
remaining classes are regarded as anomalies.

Corrupted datasets: In this context, we have eval-
uated diverse image corruption datasets, encompassing
well-known datasets such as CIFAR-10-C, CIFAR-100-C,
MNIST-C, EMNIST-Letters-C, FMNIST-C, and SVHN-C.
Each of these datasets exhibits various types of corruption, in-
cluding but not limited to brightness, contrast, impulse noise,
rotation, saturation, shot noise, and more. While bench-
mark datasets were available for CIFAR-10-C, CIFAR-100-
C, MNIST-C, and FMNIST-C, for SVHN-C and EMNIST-
Letters-C, we did not have pre-existing corrupted datasets.
Therefore, we manually created datasets for some corruption
types in these cases. Specifically, for SVHN-C, the corrup-
tion types include contrast, Gaussian blur, Gaussian noise,
glass blur, impulse noise, shot noise, and speckle noise. In
the case of EMNIST-Letters-C, the corruption types include
brightness, contrast, glass blur, impulse noise, motion blur,
rotation, saturation, scale, shear, shot noise, and general
noise.

B.2. ND Experiments Details

The extensive results obtained from our experiments on Uni-
versal Novelty Detection (UNODE), conducted using stan-
dard datasets in a one-class setting, can be found in tables
7 and 8. These tables present a thorough breakdown of AU-
ROC scores for each class. Furthermore, detailed outcomes
of our UNODE experiments on corrupted datasets, also in a
one-class setting, are available in tables 9 and 10, providing a
comprehensive breakdown of per-class AUROC scores over
various types of corruption (e.g., fog, scale, snow, shot noise,
impulse_noise) .

B.3. Multi-class Setting Details

For unlabelled settings, we train our method on CIFAR-10
and CIFAR-100 as inlier datasets and evaluate that with
CIFAR-10, CIFAR-100, SVHN, MNIST, FashionMNIST

and ImageNet30 as outlier datasets. We show that we handle
high variation setups as a general method that is robust to
the diversity of inlier and outlier datasets.

In labeled settings, we explore the labeled version of the
previously described setup. Specifically, we assume that
each in-distribution sample includes distinctive label infor-
mation. In the training procedure, we replace a binary classi-
fier with an n-class classifier, where n represents the number
of distinct in-distribution dataset classes. We employ cross-
entropy as before during training. In the evaluation phase,
we substitute the binary out-of-distribution (OOD) score
component of the anomaly score with the maximum softmax
probability, samples with lower maximum softmax probabil-
ities are more likely to be out-of-distribution. so specially
we use 1 minus the maximum softmax probability(1-MSP)
as a part of score.

C. Implementation Details

C.1. Implementation Details

Model details: We employ WideResNet-50-2 as the foun-
dational encoder network(fθ), accompanied by a projection
head (gϕ) comprising a 2-layer multi-layer perceptron with
a 128-dimensional embedding dimensionas as well as a sep-
arate linear classification layer. As a foundational encoder
network, we used both pre-trained(train on ImageNet-21k
and then fine-tuning on ImageNet-1k) and from scratch ver-
sions of a WideResNet-50-2 model. We found our method
performs well with either type of encoder initialization. This
indicates our approach can effectively generate embeddings
and predictions regardless of whether the base encoder is
pre-trained or learns representations from scratch.

Training Details: Our model train for 1000 epochs using
a LARS optimizer incorporating a weight decay of 1e-6
and a momentum of 0.9. To schedule the learning rate, we
adopt a linear warmup for the initial 10 epochs, gradually
increasing the learning rate to 1.0. Subsequently, we employ
a cosine decay schedule without a restart.

Anomaly score detail: The anomaly score is composed
of two parts that need to be combined: a similarity score
and a binary out-of-distribution (OOD) score. In order to
sum these two scores, they need to first be transformed to
match the same scale. To accomplish this, we use a weighted
sum to integrate the two scores. The weighting coefficient λ
(balancing term) is applied to balance and rescale the binary
OOD score. The calculation of λ involves two steps. First,
we normalize the binary OOD scores by dividing each binary
OOD score by the mean binary OOD score calculated over
the entire training data set. Doing this normalization adjusts
the scale of the OOD scores to match the distribution seen in
the training data. The second step is to then match the scale
of the normalized OOD scores to the scale of the similarity
scores. This is achieved by multiplying each normalized



Table 7. Details of per-class AUROC scores for Universal Novelty Detection (UNODE) across CIFAR10, MNIST, Fashion-MNIST, SVHN,
FGVC and CIFAR100 datasets.

(a) CIFAR-10

Method Model Classes

0 1 2 3 4 5 6 7 8 9 Average

UNODE From Scratch 95.7 99.3 91.4 87.5 94.3 94.2 97.6 98.1 98.3 97.5 95.4
Pre-trained 97.0 98.8 96.0 92.4 96.5 94.7 98.5 98.6 98.6 97.8 96.9

(b) MNIST

Method Model Classes

0 1 2 3 4 5 6 7 8 9 Average

UNODE From Scratch 99.0 85.6 99.2 98.1 98.1 98.3 99.4 98.4 98.8 99.4 97.4
Pre-trained 99.3 98.6 99.1 97.9 99.2 99.0 99.5 99.7 98.4 99.3 99.0

(c) FashionMNIST

Method Model Classes

0 1 2 3 4 5 6 7 8 9 Average

UNODE From Scratch 91.0 99.3 94.4 89.1 90.1 96.6 85.1 97.9 98.9 99.2 94.2
Pre-trained 90.7 99.5 89.7 92.4 92.0 95.6 79.1 98.7 98.2 98.2 93.4

(d) SVHN

Method Model Classes

0 1 2 3 4 5 6 7 8 9 Average

UNODE From Scratch 97.4 95.1 96.6 94.5 97.9 96.9 95.3 97.7 96.4 95.6 96.3
Pre-trained 92.5 81.4 92.5 89.9 94.5 92.6 92.9 93.3 88.5 92.4 91.0

(e) FGVC

Method Model Classes

0 1 2 3 4 5 6 7 8 9 Average

UNODE From Scratch 78.1 75.6 55.2 85.4 88.3 84.3 82.9 92.0 86.6 73.5 80.2
Pre-trained 75.0 84.0 61.5 86.9 90.4 81.4 91.7 93.3 87.3 74.9 82.9

(f) CIFAR-100

Method Model Classes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Average

UNODE From Scratch 92.5 93.2 97.5 95.0 97.2 94.0 96.8 92.7 93.9 97.6 97.0 93.8 93.4 89.2 96.1 85.3 91.0 99.3 96.8 94.9 94.4
Pre-trained 92.0 93.0 96.9 92.2 97.1 91.7 95.7 92.0 94.2 96.3 97.5 92.4 92.9 88.6 93.9 85.5 91.8 98.9 94.7 95.3 93.6

Table 8. Details of per-class AUROC scores for Universal Novelty Detection (UNODE) across MVTecAD and EMNIST-Letters datasets.

(a) MVTecAD

Method Model Classes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Average

UNODE From Scratch 99.2 99.7 92.6 92.6 99.6 99.8 91.5 99.8 92.7 90.4 97.2 81.8 88.9 100.0 88.9 94.3
Pre-trained 98.1 100.0 94.9 96.0 99.8 99.9 83.9 99.8 95.8 96.7 95.9 87.0 98.5 100.0 87.1 95.6

(b) EMNIST-Letters

Method Model Classes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Average

UNODE From Scratch 98.4 98.5 99.5 99.4 99.4 98.7 98.0 98.4 96.3 98.3 98.4 95.8 99.6 97.3 99.0 99.4 98.6 96.2 99.5 98.4 98.5 99.1 99.2 99.7 96.9 98.9 98.4
Pre-trained 97.9 97.2 98.4 99.0 99.3 97.7 97.0 97.5 97.8 96.1 99.1 98.4 98.0 96.2 98.7 98.8 97.8 98.0 99.2 97.9 98.2 98.8 97.6 98.7 97.1 99.4 98.1

binary OOD score by the mean of the norms of all the em-
beddings from the training data. By matching the scales in
this way through the two computation steps of normaliza-
tion and rescaling, the binary OOD score becomes directly
compatible and summable with the similarity score. The end
result is that applying the weighting coefficient λ(balancing
term) to properly transform the binary OOD score allows it
to be combined with the similarity score into a final, unified

anomaly score with common scaling and significance. The
two components are calibrated to contribute equally based
on their training data distributions.

Oours(x;Dtrain
in ) = Osim(x;Dtrain

in ) + λ ·Obin−OOD(x)
(16)



Table 9. Details of per-class AUROC (%) scores for Our Universal Novelty Detection (UNODE) across corrupted datasets such as MNIST-C,
CIFAR-10-C and CIFAR-100-C with various types of corruption (e.g., fog, scale, snow, shot noise, impulse_noise) are presented.

(a) MNIST-C

Normal Class Corruption Type

Normal brightness canny_edges dotted_line fog glass_blur impulse_noise motion_blur rotate scale sheer shot_noise spatter stripe translate zigzag Average

0 99.3 93.4 93.2 98.8 64.1 77.3 95.4 79.0 98.3 99.5 98.3 96.3 91.8 96.4 99.3 97.4 91.9
1 99.7 95.9 99.8 94.6 70.4 98.3 96.9 98.0 97.8 99.4 98.0 99.1 94.6 98.4 99.5 88.4 95.3
2 96.5 94.5 84.4 94.3 69.6 72.7 69.3 88.1 91.9 95.0 93.5 92.5 88.3 83.5 96.4 86.4 86.7
3 97.1 97.2 90.3 97.0 78.1 65.0 83.0 88.4 87.0 92.0 96.9 94.6 92.3 91.4 96.7 89.4 89.3
4 98.9 97.6 74.3 97.3 78.8 71.1 83.1 84.1 94.2 98.0 96.0 95.6 92.7 91.6 98.7 91.8 89.7
5 96.9 94.6 87.4 94.5 72.4 84.3 81.5 91.9 93.6 95.8 96.9 94.7 90.3 70.8 97.1 88.4 88.9
6 98.2 95.1 83.7 97.4 70.0 82.8 89.5 91.0 96.2 97.6 96.7 95.5 94.8 89.2 98.1 90.7 91.2
7 99.0 95.9 94.6 94.1 65.5 82.5 76.2 90.8 93.0 98.2 97.5 95.8 90.0 85 98.4 92.1 90.0
8 97.6 97.3 32.7 96.1 78.6 60.2 81.0 82.4 94.2 95.7 98.0 92.6 91.1 88.8 96.4 89.2 85.0
9 98.2 95.0 71.0 96.7 63.5 71.4 73.5 87.0 94.3 94.6 95.8 96.2 92.0 84.3 97.5 88.4 86.7

Average 98.1 95.7 81.1 96.1 71.1 76.6 82.9 88.1 94.1 96.6 96.8 95.3 91.8 87.9 97.8 90.2 89.5

(b) CIFAR-10-C
Normal Class Corruption Type

identity brightness contrast defocus_blur elastic_transform fog frost gaussian_blur impulse_noise jpeg_compression motion_blur pixelate saturate shot_noise snow spatter speckle_noise zoom_blur Average

0 97.0 94.4 84.9 92.4 91.8 85.5 88.7 91.8 70.4 93.7 92.1 86.9 94.0 75.9 92.9 82.0 68.0 94.1 87.5
1 98.8 98.1 77.6 97.5 95.8 95.0 94.8 97.0 78.8 97.4 96.7 92.7 97.9 93.6 97.2 92.7 90.6 98.0 93.9
2 96.0 93.8 70.6 88.9 89.8 83.4 87.8 87.7 69.6 91.9 88.1 82.6 93.6 83.3 90.9 79.3 81.7 92.1 86.1
3 92.4 89.1 76.1 84.6 86.4 79.7 81.9 83.6 62.1 87.7 84.0 78.1 89.5 73.7 86.9 80.1 72.5 87.9 82.0
4 96.5 94.8 83.8 89.8 92.5 85.5 91.3 88.7 81.1 92.7 89.4 89.6 94.4 89.7 92.2 84.7 88.9 93.0 89.9
5 94.7 91.7 76.9 87.2 89.3 84.9 86.2 86.2 66.0 91.9 86.9 79.1 91.5 77.4 91.8 77.3 73.5 90.7 84.6
6 98.5 97.7 83.4 95.4 95.7 89.1 96.6 94.7 88.3 96.3 94.1 93.5 97.2 94.9 96.1 94.6 94.7 96.9 82.0
7 98.6 97.6 85.8 95.6 95.3 89.2 93.6 94.9 76.1 96.8 94.2 90.7 97.6 91.1 96.8 91.9 88.5 97.0 92.8
8 98.6 98.2 90.0 96.5 95.8 91.3 91.4 96.0 79.4 97.7 96.3 94.7 97.8 81.7 94.8 90.0 76.0 97.5 92.4
9 97.8 96.3 77.1 94.9 93.7 92.5 94.3 94.6 83.7 95.9 94.4 88.6 96.2 91.7 95.1 90.6 89.8 96.2 92.4

Average 96.9 95.2 80.6 92.3 92.6 87.6 90.7 91.5 75.5 94.2 91.6 87.7 95.0 85.3 93.5 86.3 82.4 94.3 89.2

(c) CIFAR-100-C
Normal Class Corruption Type

identity brightness contrast defocus_blur elastic_transform fog frost gaussian_blur impulse_noise jpeg_compression motion_blur pixelate saturate shot_noise snow spatter speckle_noise zoom_blur Average

0 92.5 94.4 84.9 92.4 91.8 85.5 88.7 91.8 70.4 93.7 92.1 86.9 94.0 75.9 92.9 82.0 68.0 94.1 86.7
1 93.2 92.0 77.5 89.0 88.5 77.5 85.2 88.1 67.6 90.3 87.9 80.6 91.3 77.9 86.0 76.2 75.2 91.4 83.1
2 97.5 93.8 70.6 88.9 89.8 83.4 87.8 87.7 69.6 91.9 88.1 82.6 93.6 83.3 90.9 79.3 81.7 92.1 85.1
3 95.0 89.1 76.1 84.6 86.4 79.7 81.9 83.6 62.1 87.7 84.0 78.1 89.5 73.7 86.9 80.1 72.5 87.9 80.9
4 97.2 94.8 83.8 89.8 92.5 85.5 91.3 88.7 81.1 92.7 89.4 89.6 94.4 89.7 92.2 84.7 88.9 93.0 89.2
5 94.0 91.7 76.9 87.2 89.3 84.9 86.2 86.2 66.0 91.9 86.9 79.1 91.5 77.4 91.8 77.3 73.5 90.7 83.5
6 96.8 97.7 83.4 95.4 95.7 89.1 96.6 94.7 88.3 96.3 94.1 93.5 97.2 94.9 96.1 94.6 94.7 96.9 93.9
7 92.7 89.1 67.7 88.1 87.0 78.0 85.8 87.4 70.4 87.5 87.9 78.4 86.8 80.6 87.8 79.2 79.6 90.4 82.7
8 93.9 98.2 90.0 96.5 95.8 91.3 91.4 96.0 79.4 97.7 96.3 94.7 97.8 81.7 94.8 90.0 76.0 97.5 91.7
9 97.6 96.3 77.1 94.9 93.7 92.5 94.3 94.6 83.7 95.9 94.4 88.6 96.2 91.7 95.1 90.6 89.8 96.2 91.8
10 97.0 97.1 93.1 96.2 96.2 89.7 92.3 95.9 68.1 96.3 96.5 93.2 94.8 74.1 92.8 64.5 72.4 96.7 88.3
11 93.8 90.1 71.2 89.6 87.0 79.0 79.0 88.8 50.2 87.8 88.0 74.7 90.6 69.8 86.5 81.6 70.3 91.0 80.3
12 93.4 90.8 70.5 89.9 88.4 76.7 85.0 89.0 60.4 89.9 88.2 74.5 90.2 78.0 87.6 80.3 74.7 92.5 82.7
13 89.2 85.9 69.9 85.3 81.8 73.8 79.9 84.1 64.7 84.5 81.7 75.5 85.7 78.4 82.7 73.5 75.4 87.2 79.4
14 96.1 88.7 68.1 68.1 86.8 78.9 83.7 87.9 56.7 86.4 85.5 70.2 89.2 73.5 87.5 73.4 69.5 91.3 79.2
15 85.3 84.3 63.5 85.3 81.1 70.1 78.8 84.3 59.9 83.1 81.8 70.7 83.0 69.3 80.1 73.0 68.5 87.0 76.7
16 91.0 89.8 73.4 87.6 87.0 80.2 82.4 86.5 58.6 88.5 84.7 75.8 89.0 67.5 84.6 77.5 64.7 90.7 80.5
17 99.3 98.3 89.9 97.8 97.7 92.8 97.3 97.4 77.9 97.7 96.9 93.2 98.1 94.2 95.5 91.5 93.7 98.6 94.6
18 96.8 92.3 63.2 94.2 86.6 84.2 85.3 93.6 69.9 88.3 88.8 73.9 91.9 78.9 87.3 84.8 77.2 95.1 84.5
19 94.9 92.5 71.4 93.4 89.5 81.0 86.8 92.8 61.6 90.7 88.7 82.0 91.5 77.7 88.0 80.0 70.6 94.4 84.3

Average 94.4 92.3 76.1 89.7 89.6 82.7 87.0 90.0 68.3 90.9 89.1 81.8 91.8 79.4 89.3 80.7 76.8 92.7 85.2

C.2. Augmentation Details

In the development of the AutoAugOOD pipeline, a diverse
array of augmentation techniques has been employed, specif-
ically Rotation, Permute, Gaussian Noise, CutOut, CutPaste,
Sobel, Blur, and MixUp. These methods are meticulously
applied to each dataset variant, resulting in a range of trans-
formed datasets. Following the transformation process, em-
beddings for each augmented dataset are extracted using
CLIP ResNet 50. The next critical step involves the appli-
cation of tsne1, implemented using the sklearn library, on
the concatenated embeddings from all dataset variants. This
procedure yields one-dimensional (1D) numerical represen-
tations.

Subsequently, these 1D representations of the augmented
datasets, juxtaposed with those of the original dataset, form
the basis for calculating a KL divergence score, also com-

puted using the sklearn library. This score effectively quan-
tifies the divergence between the distribution of augmented
datasets and the original dataset. Finally, to translate these
KL divergence scores into a more interpretable format, a soft-
max function is utilized. This conversion yields a probability
score for each augmentation type.

It is crucial to emphasize that all these processes — from
data augmentation to the calculation of probability scores
using softmax — are conducted prior to the training stage of
the model.

C.3. Leveraging Pre-trained Models for OOD De-
tection

Numerous methods employ large-scale pre-trained models,
such as MSAD, for outlier detection, and their performance
heavily depends on the rich features learned by their back-
bone, such as ViT. However, these pipelines do not function



Table 10. Details of per-class AUROC (%) scores for Our Universal Novelty Detection (UNODE) across corrupted datasets such as
EMNIST-Letters-C with various types of corruption (e.g., fog, scale, snow, shot noise, impulse_noise) are presented.

(a) EMNIST-Letters-C

Normal Class Corruption Type

brightness contrast glass_blur impulse_noise motion_blur rotate saturate scale sheer shot_noise Average

1 96.1 77.7 39.9 54.2 83.3 92.9 96.2 97.9 92.3 55.4 78.6
2 96.6 81.8 48.1 70.4 76.7 95.8 97.1 98.0 91.9 70.0 82.6
3 98.2 68.9 53.3 38.6 93.7 97.0 99.1 99.0 96.3 53.0 79.7
4 97.6 85.9 44.6 54.9 77.1 97.5 98.7 99.3 97.2 76.9 83.0
5 98.7 89.0 35.6 58.6 86.8 96.6 98.1 99.2 94.8 47.9 80.5
6 97.4 92.7 66.7 61.7 80.7 89.0 98.5 97.9 87.6 83.7 85.6
7 92.3 72.8 44.7 66.0 67.0 93.2 94.3 96.5 90.0 65.2 78.2
8 93.8 83.4 58.4 56.9 87.8 94.5 97.4 97.7 94.6 82.8 84.7
9 87.4 89.4 89.0 39.2 93.5 95.9 96.7 96.7 96.0 80.7 86.5
10 85.2 90.3 70.2 57.5 83.4 91.4 96.0 96.5 91.3 89.1 85.1
11 97.7 87.3 51.1 63.2 88.1 94.8 99.1 98.7 94.8 78.5 85.3
12 83.2 94.3 91.6 59.9 90.1 95.9 94.4 97.2 93.5 88.5 88.9
13 97.5 82.3 29.4 62.8 86.6 94.7 98 97.8 94.7 81.9 82.6
14 95.3 75.0 37.9 42.1 87.0 92.8 96.9 96.2 93.1 51.3 76.8
15 99.2 78.0 57.8 44.1 93.6 98.2 98.5 99.1 97.7 36.6 80.3
16 98.3 91.9 72.5 58.4 91.0 96.7 98.8 98.9 95.2 79.9 88.2
17 94.3 78.5 54.0 69.9 75.1 94.6 96.9 97.2 93.5 71.7 82.6
18 94.3 75.7 60.6 32.2 90.5 93.3 95.5 97.1 89.4 51.9 78.1
19 98.9 79.3 38.9 51.5 92.5 95.9 99.0 98.8 92.2 52.8 80.0
20 93.9 91.2 73.1 52.5 85.7 89.8 98.9 98.1 90.5 88.7 86.2
21 98.2 87.5 52.8 48.5 90.3 95.5 98.5 98.8 94.9 59.1 82.4
22 97.7 85.1 75.9 45.2 90.2 96.5 98.8 99.1 95.1 66.9 85.1
23 98.1 94.2 33.8 73.9 85.0 95.1 98.5 97.5 96.9 83.6 85.7
24 98.0 94.9 53.6 63.7 88.4 90.2 98.9 98.9 95.1 70.4 85.2
25 88.5 85.3 77.6 64.1 86.4 93.7 96.8 97.6 92.7 86.1 86.9
26 97.7 93.7 47.1 69.3 76.6 92.4 99.3 99.1 88.7 82.3 84.6

Average 95.2 84.9 56.1 56.1 85.7 94.4 97.7 98 93.5 70.6 83.2

effectively when the pre-trained models are replaced with
models trained from scratch. Interestingly, our proposed
method achieves significant performance improvements with
both pre-trained and from-scratch models.

D. Ablation Study: In-Depth Analysis and Re-
sults

D.1. Evaluation of AutoAugOOD Replacement

Methodology:
• We replaced AutoAugOOD with a set of common fixed

hard augmentations, including rotation (as per [49]), and
cut-and-paste techniques [25].

• AutoAugment [9], a method designed for classification
improvement, was also tested.

• Additionally, we incorporated FakeD [28] into our experi-
ments for a comprehensive comparison.
Results:

• Performance metrics (accuracy, F1-score, etc.) for each
replacement were recorded.

• A comparative analysis was conducted to assess the impact
of each augmentation technique on the model’s ability to
detect novel instances.
Interpretation:

• The results, detailed in Table 4, highlight the effectiveness
of AutoAugOOD over traditional augmentation methods.

• The comparison with AutoAugment and FakeD provides
insights into the adaptability and robustness of our method

in diverse scenarios.

D.2. Analysis of Training Objectives

Methodology:
• We dissected our training objective, isolating the con-

trastive and classification losses.
• Each component was individually omitted or modified to

observe its impact on the overall performance.
Results:

• Table 5 presents the performance variations under different
training objective configurations.

• Metrics such as loss convergence rate and classification
accuracy were primarily focused on.
Interpretation:

• This analysis elucidates the contribution of each compo-
nent in our training objective, emphasizing the synergy
between contrastive and classification losses for optimal
performance.

D.3. Evaluation of Novelty Score Components

Methodology:
• We examined the individual effects of each component

in our novelty score, namely the binary score (14) and
similarity score (13).

• Variations were introduced in these components to assess
their individual and combined impact.
Results:

• Table 6 showcases how each component influences the



model’s ability to differentiate between novel and familiar
instances.

• The effectiveness of each scoring method was quantified
and compared.
Interpretation:

• This segment of the study provides a deeper understanding
of how each scoring component contributes to the overall
effectiveness of our novelty detection approach.

D.4. Why Our Augmentation Pipeline (AutoAu-
gOOD) is the Best Fit for Near-OOD Gen-
eration

In numerous studies, including those focusing on adversarial
robustness, the utility of leveraging an additional dataset
to enhance model performance has been substantiated, pro-
vided certain conditions are met. A crucial criterion in this
context is the fidelity, diversity, and relevance of this supple-
mentary data to the inlier training set. Intriguingly, AutoAu-
gOOD excels in generating diverse data through a variety
of transformations while concurrently ensuring the crafted
data exhibit high Out-Of-Distribution (OOD) characteristics.
This approach is particularly synergistic with the principles
of contrastive learning. In this domain, several studies have
demonstrated that the inclusion of diverse negative pairs is
instrumental in fostering the development of more effective
representations. By aligning with these principles, AutoAu-
gOOD not only introduces diversity but also maintains a high
degree of relevance to the original data distribution, thereby
making it an optimal choice for Near-OOD generation.

E. Additional Methodological Details
OOD samples can be broadly classified into two categories:
pixel-level and semantic-level. In pixel-level OOD detec-
tion, the distinction between In-Distribution (ID) and OOD
samples lies in their local appearance, despite them being
semantically similar. For example, a broken glass, in con-
trast to an intact one, can be identified as an OOD sample
due to its altered local appearance, even though both are
semantically related to the concept of ’glass’. On the other
hand, semantic-level OOD samples exhibit differences at
a conceptual or semantic level. An illustrative case is the
categorization of a cat as an OOD sample in a dataset where
the ID semantics are centered around dogs, signifying a
divergence in underlying concepts.

Interestingly, AutoAugOOD demonstrates the capabil-
ity to generate a wide array of OOD samples, encompass-
ing both pixel-level and semantic-level variations. This is
achieved through the application of diverse, potentially detri-
mental transformations. For instance, the ’cutpaste’ trans-
formation is adept at creating samples with textural defects,
thereby contributing to pixel-level OOD detection. Con-
versely, transformations such as rotation are instrumental in
generating semantic-level OOD samples, as they alter the

conceptual understanding of the image. This versatility of
AutoAugOOD in crafting various types of OOD samples un-
derscores its utility in enhancing robustness against a broad
spectrum of OOD scenarios.

E.1. Detailed Baselines

In this paper, we have conducted a comprehensive compar-
ison of our proposed method with several state-of-the-art
(SOTA) techniques, including SSD [40], ReCoNTRAST, Fi-
TYMI , and FastFlow. In the subsequent sections, we will
briefly outline each of these methods to provide a clearer
understanding of their functionalities and how they compare
with our approach:
The paper "SSD: A Unified Framework for Self-Supervised
Outlier Detection" proposes SSD, an outlier detection
method that uses only unlabeled in-distribution data. It em-
ploys self-supervised representation learning followed by a
Mahalanobis distance-based detection in the feature space.
The paper demonstrates that SSD outperforms most existing
detectors based on unlabeled data and can even match or ex-
ceed the performance of supervised training-based detectors.
The framework also includes extensions for few-shot outlier
detection and the incorporation of training data labels when
available.
The approach "Supervised SimCLR for Outlier Detection"
does not appear in the search results. However, there is a re-
lated method called SSD (Self-Supervised Outlier Detection)
that uses self-supervised representation learning followed by
a Mahalanobis distance-based detection in the feature space.
SSD outperforms most existing detectors based on unlabeled
data and can even match or exceed the performance of su-
pervised training-based detectors.
The paper "ReContrast: Domain-Specific Anomaly Detec-
tion via Contrastive Reconstruction" introduces a novel un-
supervised anomaly detection (UAD) method called ReCon-
trast. This method optimizes the entire network to reduce
biases towards pre-trained image domains and aligns the
network with the target domain. It combines the princi-
ples of contrastive learning and feature reconstruction to
prevent training instability, pattern collapse, and identical
shortcut. The paper demonstrates the effectiveness of ReCon-
trast through extensive experiments across industrial defect
detection benchmarks and medical image UAD tasks, where
it outperforms current state-of-the-art methods.
The paper "FastFlow: Unsupervised Anomaly Detection and
Localization via 2D Normalizing Flows" introduces Fast-
Flow, a method for unsupervised anomaly detection and
localization. FastFlow uses 2D normalizing flows as a prob-
ability distribution estimator, transforming input visual fea-
tures into a tractable distribution during the training phase.
This approach can be used with any deep feature extrac-
tors like ResNet and vision transformer. The paper shows
that FastFlow surpasses previous state-of-the-art methods in



16terms of accuracy and inference efficiency, achieving 99.4%
AUC in anomaly detection.
The paper "Towards Total Recall in Industrial Anomaly De-
tection" introduces PatchCore, an algorithm for cold-start
anomaly detection that leverages knowledge of only nominal
(non-defective) examples. PatchCore uses a maximally rep-
resentative memory bank of nominal patch-features, offering
competitive inference times while achieving state-of-the-art
performance for both detection and localization. On the
MVTec AD benchmark, PatchCore achieves an image-level
anomaly detection AUROC score of up to 99.6%, signifi-
cantly reducing the error compared to the next best competi-
tor.
The paper "Fake It Till You Make It: Towards Accurate Near-
Distribution Novelty Detection" addresses image-based nov-
elty detection, particularly in the "near-distribution" setting
where differences between normal and anomalous samples
are subtle. The authors demonstrate that existing methods ex-
perience up to a 20% decrease in performance in this setting.
They propose leveraging a score-based generative model to
produce synthetic near-distribution anomalous data, which
is then used to fine-tune a model for distinguishing such data
from normal samples. The method is evaluated quantitatively
and qualitatively, showing significant improvements over ex-
isting models and consistently reducing the performance gap
between near-distribution and standard novelty detection.
The approach is assessed across diverse applications such
as medical images, object classification, and quality control,
demonstrating its effectiveness.

F. Additional Experimetns
Here we have replaced our UNODE default backbone with
different architectures. Specifically, UNODE incorporates
two different components, including AutoAugOOD and the
detector backbone. Here, we examined the sensitivity of
UNODE to different architectures, highlighting our method’s
superior performance across various architectures. Moreover,
we considered extra datasets, including Weather [13], Birds
[44], and ImageNet30 [19]. The results are presented in
Table 11.

Table 11. The table presents the performance of our method using
different backbones compared to two recent SOTA methods [ID
1,2]. [ID 3,4] correspond to the results mentioned in the main
paper. The default detection backbone mentioned in the paper is
Wide-ResNet and AugOOD backbone is a pre-trained ResNet. The
experiments in this table demonstrate our performance using differ-
ent detection backbones (IDs 3-6) and various AutoAug backbones
with different pre-training types, including Supervised (Sup), Con-
trastive (Con), Supervised Contrastive (Con-Sup). Star* indicate
that the model is pre-trained.

Exp. Methods Backbones Datasets Mean
ID Detector AugOOD MNIST CIFAR10 MVTECAD Birds Weather ImageNet

1 MSAD Res152* N/A 96.0 97.2 87.2 96.7 92.4 96.9 94.4
2 FITYMI ViT-B_16* N/A 75.2 99.1 86.4 98.5 97.0 97.5 92.2

3 UNODE Wide-Res50-2 Res18-Sup* 97.4 95.4 95.3 94.8 95.1 94.6 95.4
4 UNODE Wide-Res50-2* Res18-Sup* 99.0 96.9 95.8 96.0 94.7 97.3 96.6
5 UNODE R50+ViT-B_16* Res18-Sup* 98.7 97.8 95.3 94.5 95.8 96.3 96.4
6 UNODE Res18 Res18-Sup* 98.3 95.0 94.8 93.5 94.8 93.8 95.0

7 UNODE Wide-Res50-2 Res18-Con* 97.3 95.6 94.4 95.1 95.2 93.8 95.2
8 UNODE Wide-Res50-2 Res18-SupCon* 97.1 95.0 96.2 94.0 94.6 95.1 95.3
9 UNODE Wide-Res50-2 ViT-B_16-Sup* 96.8 95.7 95.3 94.4 93.5 94.7 95.1
10 UNODE Wide-Res50-2 VGG19-Sup* 96.4 95.2 95.0 94.5 93.8 94.1 94.8
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