
Single Mesh Diffusion Models with Field Latents for Texture Generation

Supplementary Material

8. Equivariance

Here we provide detailed proofs of the claims made in Sec-

tions 4 and 5 regarding sufficient conditions for isometry-

equivariance.

8.1. Field Latents

Consider the FL variational autoencoder consisting of the

encoder E and decoder D defined pointwise as in Equa-

tions (3) and (4), respectively.

Claim 1. If for all ψ ∈ L2(M,Rn), isometries γ : M →
N , and points p ∈ M , the encoded mean and standard

deviation satisfy the condition of Equation (7)

dγ|p · µ
ψ
p = µ

γψ

γ(p) and σψ
p = σ

γψ

γ(p),

then the FL-VAE commutes with isometries such that

d[γψ]γ(p) = γ bψp.

Proof. First, we observe that for any isometry γ : M → N

and point p ∈ M , the differential dγ|p is an orthogonal

transformation taking vectors in TpM to Tγ(p)N . Thus,

within our complexification of the tangent space, dγ|p is an

element of U(1), the group of complex numbers with unit

modulus, acting multiplicatively on Cp.

Now, consider any ψ ∈ L2(M,Rn), isometry γ : M →
N , point p ∈ M , and suppose the encoded mean µψ

p and

standard deviation σψ
p satisfy the condition. Then, we can

relate latent codes distributed in Tγ(p)N to those in TpM

with

z
γψ

γ(p) = µ
γψ

γ(p) + σ
γψ

γ(p) ⊙ ϵ′(γ(p)), ϵ′ ∼ T NN (0, Id)

(2)
= µ

γψ

γ(p) + dγ|p · σ
γψ

γ(p) ⊙ ϵ(p), ϵ ∼ T NM (0, Id)

(7)
= dγ|p · µ

ψ
p + dγ|p · σ

ψ
p ⊙ ϵ(p)

= dγ|p · z
ψ
p (15)

Using the relationship between the latent codes and the fact

that logγ(p) γ(q) = dγ|p · logp q for q ∈ Bp as long as

γ is an isometry, it follows that the coordinate function in

Equation (5) is invariant with

c
γψ

γ(p)γ(q)

(5)
= logγ(p) γ(q) · z

γψ

γ(p)

(15)
= dγ|p · logp q · dγ|p · z

ψ
p

(5)
= cψpq, (16)

with the last equality following from the fact that dγ|p ·

dγ|p = 1. Similarly, it follows that

z
γψ

γ(p)

h
z
γψ

γ(p)

i∗ (15)
= dγ|p · dγ|p · z

ψ
p

�

zψp
�∗

= zψp
�

zψp
�∗

. (17)

Now, denoting F as the decoder neural field such that

bψp(q) ≡ F
�

cψpq, vecj≥i

�

zψp
�

zψp
�∗
��

, (18)

it follows that for all q′ ∈ Bγ(p) ⊂ N we have

d[γψ]γ(p)(q′)
(18)
= F

�

c
γψ

γ(p)q′ , vecj≥i

�

z
γ(ψ)
γ(p)

h
z
γψ

γ(p)

i∗��

= F
�

c
ψ

pγ−1(q′), vecj≥i

�

zψp
�

zψp
�∗
��

(18)
= γ bψp(q

′),

with the equality c
γψ

γ(p)q′ = c
ψ

pγ−1(q′) following from Equa-

tion (16) and the inveritibility of isometries. Thus we have
d[γψ]γ(p) = γ bψp as desired.

8.2. Field Latent Diffusion Models

Consider the denoising network ε as in Equation (9) and the

forward and reverse diffusion processes defined in Equa-

tions (8) and (11).

Claim 2. If for all latent vector fields Z ∈ TMd, isometries

γ : M → N , embeddings ρ ∈ L2(M,Rm), and timestep

0 ≤ t ≤ T , the denoising network satisfies the condition of

Equation (13)

γε(Z, t, ρ) = ε(γZ, t, γρ),

then both the forward and reverse diffusion processes com-

mute with isometries with

γZt = [γZ]t and γ eZt =
�

γ eZ
�

t
.

Note: At the risk of abusing notation, we use the subscript t

to refer to both the forward and reverse diffusion processes.

To disambiguate the two, we denote latent vector fields sam-

pled from the reverse process with a tilde, e.g. eZt ∈ TMd.

Proof. Consider any latent vector fields Z ∈ TMd and

isometry γ : M → N . The forward process does not de-

pend on the denoising network and demonstrating equivari-

ance is straight-forward as

γZt

(8)
=

√
αtγZ +

√
1− αtγϵ, ϵ ∼ T NM (0, Id)

(2)
=

√
αtγZ +

√
1− αtϵ

′, ϵ′ ∼ T NN (0, Id)

(8)
= [γZ]t

Now, suppose the denoising network ε satisfies the con-

dition. Equivariance of the reverse process can be shown

through induction, with the base case t = T holding as

γ eZT = γ eZ, eZ ∼ T NM (0, Id)

(2)
= γ eZ, γ eZ ∼ T NN (0, Id)

=
�

γ eZ]T

Then, assuming γ eZτ =
�

γ eZ
�

τ
holds at step τ , for step τ−1

we have

γ eZτ−1
(11)
= C1(ατ ,ατ−1) γ eZτ

+ C2(ατ ,ατ−1) γε(eZτ , τ, ρ)

+ C3(ατ ,ατ−1) γϵ, ϵ ∼ T NM (0, Id)

(2)
= C1(ατ ,ατ−1) γ eZτ

+ C2(ατ ,ατ−1) γε(eZτ , τ, ρ)

+ C3(ατ ,ατ−1) ϵ
′, ϵ′ ∼ T NN (0, Id)

(13)
= C1(ατ ,ατ−1) γ eZτ

+ C2(ατ ,ατ−1) ε(γ eZτ , τ, γρ)

+ C3(ατ ,ατ−1) ϵ
′

= C1(ατ ,ατ−1)
�

γ eZ
�

τ

+ C2(ατ ,ατ−1) ε(
�

γ eZ
�

τ
, τ, γρ)

+ C3(ατ ,ατ−1) ϵ
′

=
�

γ eZ]τ−1,

with the second to last equality following from the induction

assumption. Thus, by induction we have γ eZt =
�

γ eZ
�

t
for

0 ≤ t ≤ T as desired.

9. Implementation Details

Tangent bases At each vertex, the associated tangent

space lies in a plane perpendicular to the vertex normal

direction. We construct orthonormal bases in the tangent

space at a given vertex by simply choosing an arbitrary unit

vector perpendicular to the normal as the x−axis, then tak-

ing its cross product with the normal to get the y−axis.

Linearities, Nonlinearities, and Normalization With

the exception of the decoder neural field F as in Equa-

tion (18) and a few layers in the encoder, all of our net-

works are complex — all linear layers and convolutional

filters have complex-valued weights, with additive biases

omitted to preserve equivariance.

For both FL-VAE and FLDM, we use modified versions

of Vector Neurons (VNs) [10] and Filter Response Nor-

malization [49] as nonlinear and normalization layers for

tangent vector features. Nonlinearities are learnable map-

pings between TMC and TMC′

applied point-wise. Let-

ting K,Q ∈ TMC′

be the output of two learnable linear

layers taking features X ∈ TMC as input, the c′−th output

feature X ′
c′ ∈ TM of our nonlinear layers is given by

X ′
c′(p) = Qc′(p) +

ReLU
�

−Re(Qc′(p)Kc′(p))
�

|Kc′(p)|2 + δ
Kc′(p),

(19)

where δ > 0 a constant and the argument of the ReLU func-

tion is the inner product of Qc′(p) and Kc′(p) in TpM .

Similarly, given tangent vector features X ∈ TMC , nor-

malization is applied on a per-channel basis independent of

the batch size via the mapping

Xc 7→
acXcp

Ep∈M |Xc(p)|2 + δc
, (20)

where ac ∈ C and δc ∈ R>0 are learnable parameters.

It is easy to see that both our normalization and nonlin-

ear layers are equivariant under isometries, as they preserve

magnitudes, inner products, and areas (which preserves the

computation of means).

9.1. Field Latents

Encoder architecture The encoder operates pointwise,

and is carefully constructed so as to satisfy the conditions

for equivariance in Equation (7). At each vertex p, a fixed

number of points are uniformly sampled in the one ring

neighborhood at which the texture is evaluated. The re-

sulting collection of 3−channel scalar features {ψ(qi)} are

lifted to a collection of C−channel tangent vector features

{ζψpqi} by multiplying the logarithms by the output of a lin-

ear layer L1 : R3 → C
C such that

ζψpqi = L1(ψ(qi)) · logp qi (21)

A token feature ξψp ∈ C
C
p is initialized via a gathering oper-

ation with

ξψp =
X

i

logp qi · L2(ψ(qi))⊙ f(|logp qi|), (22)

where L2 : R3 → C
C is a linearity and f : R → C

C is

a filter parameterized by a two-layer MLP. It is easy to see

that the lifted features satisfy

dγ|p · ζ
ψ
pqi

= ζ
γψ

γ(p)γ(qi)
and dγ|p · ξ

ψ
p = ξ

γψ

γ(p) (23)

for any isometry γ : M → N due to the transformation of

the logarithm map and the preservation of its magnitude.

The concatenation {ζψpqi} ∪ {ξψp } is then passed to eight

successive VN-Transformer layers [1]; each layer consists

of a normalization, followed by a multi-headed attention

block over the sample dimension, a second normalization,

and two tangent vector neurons, with residual connections

after the attention layer and final nonlinearity. The linear

layers in the attention block use complex weights, with the

the real part of product between the keys and values passed

to the softmax — a construction that is equivariant under

both isometries and the ordering of samples.

Afterwards, the token feature is extracted from the out-

put of the VN-Transformer layers {bζψpqi} ∪ {bξψp } and used

to predict the mean and standard deviation. Specifically,

the token feature is passed to a two-layer equivariant MLP

M1 : CC → C
d using VN activations to predict the mean

with

µψ
p = M1

�

bξψp
�

. (24)

An invariant scalar feature is constructed from the token

with a learnable product [47] and used to predict the log

of the standard deviation with

lnσψ
p = M2

�

bξψp ⊙ L3(bξψp)
�

, (25)

where L3 : CC → C
C is a complex linearity and M2 :

C
C → R

d is a two-layer real-valued MLP with SiLU acti-

vations, taking the stacking of the real and imaginary com-

ponents of the invariant feature as input.

In practice, we sample 64 uniformly distributed points in

each one-ring, and use C = 128 channels in all layers of

the encoder network.

Decoder architecture The learnable component of the

FL decoder is the neural field F to which the concatena-

tion of the positional and invariant features are passed to

predict the texture value as in Equation (18). Specifically,

the neural field is a five-layer real-valued MLP with SiLU

activations and 512 channels in each layer, taking the stack-

ing of the real and imaginary components of the complex

features as input.

Training During training we consider the reconstruction

loss over the one-rings

LR = E p∈M,q∈Bp
∥ψ(q)− bψp(q)∥1, (26)

in addition to the Kullback-Leibler divergence to regularize

the distributions of the latent codes in the tangent space

LKL =

1

2
Ep∈M

dX

i=1

�

1 + ln [σp]
2
i
− |[µp]i|

2 − [σp]
2
i

�

.
(27)

The FL-VAE is trained to optimize the sum of the recon-

struction and KL losses,

LFL = LR + λLKL, (28)

with λ > 0 controlling the weight between the terms.

We train a single FL-VAE for use in all experiments. It

is trained with λ = 0.01. Training is performed for 1.5M

iterations with a batch size of 16 and an initial learning rate

of 10−3, decaying to 10−5 on a cosine schedule. Running

on an NVIDIA A100 GPU, convergence usually happens

within five hours.

The FL-VAE is trained using OpenImagesV4 [29] which

contains only images. Planar meshes are randomly gener-

ated using farthest point sampling followed by Delaunay

triangulation, and are are overlaid on these images. The

FL-VAE is trained on the one-rings of the resulting textured

2D meshes. By design, the FL-VAE is agnostic to the 3D

embedding of one-rings because it only interfaces with their

local flattening, allowing for zero-shot encoding and decod-

ing on arbitrary 3D meshes at inference.

As a general rule, the number and variance of pixel val-

ues in one-rings during training should be equal to or greater

than what is expected on target 3D assets to ensure robust-

ness (we train on a high-res, diverse image dataset OpenIm-

agesV4 to ensure high-variance). Furthermore the latent di-

mension should increase proportional to the number of pix-

els expected in each one-ring, which is dependent on both

mesh and texture resolution.

As the FL-VAE does not see highly asymmetric one-

rings at training, to improve robustness at inference we uni-

formly remesh target 3D assets (though varying the planar

mesh quality during training may achieve a similar result).

9.2. Field Latent Diffusion Models

Reverse process The values of the coefficients in the re-

verse process in Equation (11) are given by [22, 50]:

C1(αt,αt−1) =

r
αt−1

αt

(29)

C2(αt,αt−1) =

s
αt−1(1− αt)

αt

s
(1− αt−1)2αt

αt−1(1− αt)
(30)

C3(αt,αt−1) =

s
1− αt−1

1− αt

�

1− αt

αt−1

�

(31)

Choice of convolution operator A majority of existing,

state-of-the-art surface convolution operators are designed

process scalar features, either alone [23, 47] or in tandem

with tangent vector features in a multi-stream approach

[45, 57]. To our knowledge, field convolutions [35] are the

only existing state-of-the-art surface convolution designed

specifically to process tangent vector features. The richness

of the convolution operators in the multi-stream approaches

is due to the intermixing of features, and the tangent vec-

tor convolution operators themselves are individually undis-

criminating. More generally, field convolutions are part of

a larger framework for equivariant convolutions that has

demonstrated success across a wide variety of modalities

and applications [33, 34, 36, 37].

However, DiffusionNet [47] is relatively fast for a sur-

face network and connectivity agnostic — attractive prop-

erties for a denoising network. We experimented with ex-

tending it to handle tangent vector features by replacing the

Laplacian eigenfunctions with those of the vector Lapala-

cian and adapting the network with the nonlinearities and

normalization in Equations (19) and (20). While we were

able to successfully train a denoising model with this archi-

tecture, we found that decoded samples had very little di-

versity and exhibited a “raggedness” similar to the textures

reconstructed from INFs [27] as seen in Figure 2. The lack

of diversity in the generated samples is likely due to the fact

that global support is baked-in to DiffusionNet’s “convolu-

tions”, making it challenging to prevent it from overfitting

to a single example.

Furthermore, DiffusionNet bandlimits features by pro-

jecting them to a low-dimensional (vector) Laplacian eigen-

basis. This presents several problems when processing vec-

tor fields in FL space. Specifically, the vector Laplacian

eigenbasis spans continuous vector fields. The FL encoder

constructs latent vector fields pointwise, which are not guar-

anteed to be continuous, let alone smooth. Thus, vector

fields in FL space are likely to suffer significant deteri-

oration by projecting onto the low-frequency eigenbasis,

potentially leading the material degradation of quality ob-

served in reconstructed samples.

Extending field convolutions Field convolutions con-

volve vector fields X ∈ TMC with C ′ × C filter banks

fc′c ∈ L2(C,C), returning vector fields X ∗ f ∈ TMC′

.

To simplify notation, we convert to polar coordinates: ex-

pressing the c−th input vector field and the logarithm in the

tangent space at a point p ∈ M as

Xc(p) ≡ ϱcp e
iφc

p and logp q ≡ rpqe
iθpq . (32)

Similarly, we denote by φpq the angle of rotation resulting

from the parallel transport Pp�q : TqM → TpM along

the shortest geodesic from neighboring points q to p on the

surface, such that for any v ∈ TqM ,

Pp�q(v) ≡ eiϕpqv (33)

Then, the c′−th output of the field convolution of X with f

is the vector field [35]

[X ∗ f]c′(p) =
CX

c=0

Z

Bp

ϱcq e
i(φc

q+ϕpq) fc′c

�

rpq e
i(θpq−φc

q)
�

dq
(34)

We extend field convolutions to interleave scalar em-

beddings with tangent vector features by convolving vec-

tor fields with filters fc′c ∈ L2(C× R
e,C), with e the em-

bedding dimension. Specifically, given a scalar embedding

π ∈ L2(M,Re), the c′−th output of field convolution of

vector fields X ∈ TMC and embedding π with C ′ × C

filter banks fc′c ∈ L2(C× R
e,C) is the vector field

[{X,π} ∗ f]c′(p) =
CX

c=0

Z

Bp

ϱcq e
i(φc

q+ϕpq) fc′c

�

rpq e
i(θpq−φc

q),π(q)
�

dq
(35)

For any isometry γ : M → N , field convolutions have the

property [35]

γX ∗ f = γ[X ∗ f], (36)

due in part to the invariance of the filter arguments under

isometries. Thus, it can be shown that the extension of field

convolutions in Equation (35) is equivariant in the sense that

{γX, γπ} ∗ f = γ[{X,π} ∗ f]. (37)

Here, our implementation of field convolutions differs

slightly from that of the original. The filter support is re-

stricted to the immediately adjacent vertices in the one-ring

about a point. Additionally, instead of parameterizing filters

with Fourier basis functions, we make use of the PointConv

trick [16, 59] to efficiently represent filters fc′c as three-

layer MLPs with eight channels in the interior layers.

Denoising network The denoising network is constructed

with FCResNet blocks [35], modified to inject scalar em-

beddings π ∈ L2(M,Re) derived from the diffusion

timestep and optional user-input features. Each FCResNet

block consists of a three-layer VN MLP, with normalization

before each VN, followed by a standard field convolution,

a second three-layer VN MLP, and a final field convolution

with the embedding.

The architecture of the denoising model is based on the

observation that by limiting the size of the network’s re-

ceptive field, distributions of latent features can be learned

without overfitting to the single textural example [28, 54,

58]. Following [54] the denoising network ε takes the form

of a shallow two-level U-Net with a single downsampling

layer. The input layer consists of two FCResNet Blocks,

with four FCResNet blocks in the downsampling and final

upsampling layers each, for a total of 10. The receptive field

of the network is equivalent to a 28−ring about each point,

which is approximately 6% of the total area of a 30K vertex

mesh. Upsampling and downsampling are performed using

mean pooling and nearest-neighbor unpooling, respectively,

augmented with parallel transport to correctly express tan-

gent vector features in neighboring tangent spaces. In all

experiments, our denoising networks use 96 channels per

FCResNet block at the finest resolution, increasing to 192
after downsampling.

Scaling input latents In practice, we scale latent vec-

tor fields in the diffusion process to have magnitudes pro-

portional to sampled noise in the tangent bundle. From

the definition of Gaussian noise in the tangent bundle in

Equation (1) as pointwise samples from 2D Gaussians,

the expected value of the pointwise magnitude of X ∼
T NM (0, I1) follows the chi distribution with

r
π

2
= Ep∈M |X(p)|. (38)

Thus, we scale input latents Z ∈ TMd to the diffusion

model per-channel such that

Zi 7→
√
π√

2Ep∈M |Zi(p)|
· Zi (39)

for 1 ≤ i ≤ d to ensure they are represented at the same

scale as the added noise.

Training The denoising network is trained subject to the

loss in Equation (10) for 300K iterations, using the Adam

[24] optimizer with a batch size of 16 and initial learning

rate of 10−3, decaying to 10−5 on a cosine schedule. A

computation bottleneck is the memory overhead induced by

the irregular (one-ring) kernel support for FCs. To scale us-

ing a NVIDIA-V100 with only 16GB of memory, we must

rematerialize tensors during backprop, resulting in slower

training (∼2 days w/8 V100s). This cost would be miti-

gated with a higher memory GPU. In contrast, Sin3DM [58]

reports training in several hours on an A6000 GPU. For in-

ference, sampling new textures is much more efficient and

takes just 10 minutes (compared to 3-5 for Sin3DM). While

we found other popular surface networks to be unsuitable

for FLDMs, FCs are not a fundamental part of our frame-

work, and in the future could be replaced by a more efficient

operator.

More generally, we found that training FLDMs on high-

res meshes (>10K vertices) produced more diverse and

higher quality textures than training on low-res meshes.

This is possibly because the FLDM sees a larger number of

latent codes and each code characterizes a smaller “unit” of

texture, affording greater flexibility in generating patterns

and smoothing transitions.

Directional control We expect that user-specified vector

fields could also be passed to FLDMs to provide direc-

tional control, with embeddings formed by taking dot prod-

ucts with the network features. For example, the user may

choose to condition the FLDMs in Fig. 6 with a vector field

pointing about the whorl of the shell. The same field could

be used during sampling (or, alternatively, a rotated or oth-

erwise manipulated vector field) to control the orientation

of synthesized features in the desired way.

10. Additional Results

See the last pages of this supplementary material document

for additional visualizations and comparisons.

Input FLDM Sin3DM [58] Input FLDM Sin3DM [58]

Figure 8. Additional samples generated from FLDMs and Sin3DM [58] in the unconditional paradigm described in section 6.2. The

electrical box and cat sculpture on the bottom row are not included in our evaluations, but present significant failure cases for Sin3DM,

which can struggle to synthesize samples from thin, shell-like models of the kind often arising from real-world 3D scans. Zoom in to

compare.

Input Labels (ρ) FLDM samples

Figure 9. Additional examples of label-guided texture synthesis with FLDMs. Many meshes contain interesting textural details only

in specific regions and are otherwise uniformly colored. Label guidance can be used to ensure generated textures generally reflect the

distribution of content on the training mesh. Zoom in to view.

Input FLDM samples FLDM samples on new geometries

Figure 10. Additional examples of generative texture transfer with FLDMs. The FL-VAE and FLDMs are in fact equivariant under local

isometries, and are thus able to replicate textural details on new geometries that are only locally similar to the training mesh. Zoom in to

view.

Highly dissimilar FLDM transfer Transfer with CFMs [11]

Figure 11. Left: While we believe the most practical use of generative texture transfer is intra-category, FL-VAEs and FLDMs can in fact

transfer textures between between highly dissimilar shapes such as from the skull to dinosaur meshes. Right: Complex Functional Maps

(CFMs) [11] transfer textures based on estimated dense correspondences. Despite SoTA performance in correspondence tasks, CFMs

struggle in the presence of topological changes, as in the skull, and pointwise mappings don’t explicitly promote smooth transfers.

ID Visualization

TROCHILUS BOOST —

Schleich Therizinosaurus ln9cruulPqc —

SAPPHIRE R7 260X OC —

Tieks Ballet Flats Electric Snake —

Reebok FS HI INT R12 Figure 2 (Top)

Snack Catcher Snack Dispenser —

Polar Herring Fillets Smoked Peppered 705 oz total —

Olive Kids Mermaids Pack n Snack Backpack —

Olive Kids Trains Planes Trucks Bogo Backpack —

Olive Kids Dinosaur Land Munch n Lunch —

Fruity Friends —

Horse Dreams Pencil Case Figure 2 (Bottom)

Horses in Pink Pencil Case —

LEGO City Advent Calendar —

Digital Camo Double Decker Lunch Bag —

ASICS GELDirt Dog 4 SunFlameBlack —

Table 3. List of Google Scanned Objects [13] assets used in the texture compression and reconstruction evaluations in section 6.1.

ID Source Visualization

3969fe35c6444293af27b976dca085a4 Objaverse Figure 8 (Top left)

656f83a4d9224c29abc82ade2207d2ce Objaverse —

e7caba92073d4adba3477c21aa25e91f Objaverse Figure 3 (Top left)

ed0afde32a194337ba1a18b1018f2d2e Objaverse Figure 3 (Top right)

e5712bffe9714a6aaa148b6b262b748d Objaverse Figure 8 (Center right)

f0e3c872f1984cf7a467645d9e0d3abd Objaverse Figure 3 (Bottom left)

2df58d08f5604c058d43e00677d325b6 Objaverse Figure 8 (Top right)

4a6d4fa8eb83401ca9ac0446bad83c0a Objaverse Figure 3 (Bottom right)

190211a19360444699dccec9eda105e6 Objaverse Figure 8 (Center left)

Now Designs Bowl Akita Black Google Scanned Objects —

Table 4. List of Objaverse [8] and Scanned Objects [13] assets used in the unconditional generation evaluations in section 6.2.

