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Supplementary Material

Here we provide additional information about our exper-
imental results, qualitative examples, implementation de-
tails, and datasets. Specifically, Section A provides more
experiment results, Section B provides additional imple-
mentation details, and Section C provides qualitative visu-
alizations to illustrate our approach.

A. Additional Experiment Results

We begin by presenting several additional ablations (Sec-
tion A.1) that further demonstrate the benefits of our CCoT
approach. We also present additional results (Section A.2)
on MMBench Perception Splits.

A.1. Additional Ablations

In what follows, we provide additional ablations that fur-
ther illustrate the benefits of CCoT. For all ablations, we
compare the ablated experiment with the corresponding
best-performing CCoT results on the SEEDBench-Image
dataset.
Random SG Regularization. To assess whether only the
structure of SGs can be valuable for reasoning, we ablate
the specific details of the scene graph. Concretely, we
pass a random SG not related to the input question to the
LMM and prompt the model to only use it as a framework
for reasoning, essentially regularizing the response via the
random SG. We find a 5.6% degradation in performance
from LLaVA-1.5-CCoT as shown in Table 4. The ablation
demonstrates that providing the structure of an SG without
accurate content leads to an accuracy decrease compared
to LLaVA-1.5-CCoT (-5.6%). The capability to generate
correct answers despite suboptimal reasoning steps is sup-
ported by recent literature—e.g. CoT [76] and DDCoT [91].
This demonstrates that our method does not require ground
truth SGs but also generates SGs accurately enough to make
LMMs substantially more effective on compositional &
multimodal tasks.
SG Knowledge Distillation. Here, we ask whether the
compositional knowledge extracted in high-quality scene
graphs can be transferred to other models. In particu-
lar, we use LLaVA-1.5-13B-CCoT scene graphs when
prompting InstructBLIP on SEEDBench-Image splits. The
entire process for running InstructBLIP-13B-CCoT re-
mains the same with just the scene graph being replaced
by the one generated by LLaVA-1.5-13B-CCoT. We find
that this actually leads to a slight degradation in perfor-
mance of InstructBLIP-13B-CCoT, but still better than
InstructBLIP-ZS-CoT.
Removing Image. Finally, we ablate the effect of removing

the image during the second response generation step. The
first step of our method is left intact, using the image and
question as context to yield a relevant scene graph. How-
ever, in the second step, we generate a response with the
image tokens masked. This experiment evaluates the gap
between the SG and the visual information offered by the
image. We find a significant decrease in performance of
26.1%, indicating that it is a combination of the image and
scene graph that affords our method its improved perfor-
mance over baselines.

Impact of individual compositional characteristics. We
individually ablate the objects, attributes, and relation-
ships of the generated CCoT SGs. We find improvements
in accuracy over LLaVA-1.5 when we remove the ob-
jects/attributes/relationships from LLaVA-1.5-13B-CCoT
by 1.5/0.8/1.2 % on SEEDBench and 3.5/3.5/2.25 % on
Winoground Text. These results indicate that each of the
three elements of CCoT contributes to its effectiveness, but
combined, they achieve the best result.

Removing the term ”Scene Graph” from prompt. It is
possible that the term ”scene graph” encapsulates some la-
tent understanding of visual compositionality that the LMM
has already. To evaluate this, we ablate the term ”scene
graph” from our prompt and simply replace it with the word
”description”. Indeed this shows a -2.1% decrease in accu-
racy on the evaluated SEEDBench-Image splits. This sug-
gests that LMMs have some knowledge of SGs from pre-
training that is helpful when generating a structured com-
positional representation to aid in multimodal reasoning.

COCO and Visual Genome Data Overfitting. Most
LMMs have been extensively instruction-tuned on images
sourced from the COCO [43] and Visual Genome [37]
datasets. In fact, LLaVA-Instruct-158k, the main dataset
used to finetune LLaVA and many other LMMs consists
solely of COCO images in order to make use of the bound-
ing box and detailed description information provided by
the dataset. Besides this, there are many instances of
other datasets that reuse COCO and Visual Genome im-
ages. As such, our method is effective in helping these
LMMs generalize to datasets like SEEDBench, MMBench,
and Winground, while showing no substantial difference in
performance compared to the zero-shot case on benchmarks
like GQA [29] and VL Checklist [90] that heavily make use
of the overfit COCO or Visual Genome images (CCoT is
-.8 % and -.6 % compared to zero-shot on GQA and VL
Checklist respectively).



Model SU IId IA IL SR VR IIn W. Avg.

LLaVA-1.5-13B-CCoT 76.0 74.4 71.8 64.3 54.5 79.2 74.2 72.1
LLaVA-1.5-13B 74.9 71.3 68.9 63.5 51.5 77.0 73.2 69.9

w/ Random Scene Graphs 73.4 71.3 67.2 62.2 50.2 77.3 75.3 66.5
w/out Objects 76.0 73.8 71.6 63.4 52.3 79.5 76.3 71.4
w/out Attributes 75.7 73.5 71.2 63.9 52.5 79.2 72.2 70.7
w/out Relationships 75.4 73.1 71.8 64.3 52.8 79.5 74.2 71.1
w/out Image 49.2 46.6 47.1 43.2 38.5 54.7 50.5 46.0
w/out ”Scene Graph” 74.7 72.3 72.5 60.4 53.0 77.0 72.2 69.8

InstructBLIP-13B-CCoT 68.7 57.9 63.7 47.9 42.8 67.1 66.0 60.1
w/ LLaVA-1.5-13B-CCoT SGs 50.6 42.2 43.0 38.1 33.8 58.0 50.5 44.8

Table 4. Ablations on SEEDBench-Image. This table describes key split-level ablation results of our method on all image splits of SEED-
Bench [39]: Instances Counting [IC], Scene Understanding [SU],Instance Identity [IIn], Instance Attributes [IA], Instance Location[IL],
Spatial Relation [SR], Visual Reasoning [VR], Text Understanding [TU], Instance Interaction[IIn]. W. Avg. denotes the weighted average.

Model IC SU IId IA IL SR VR TU IIn
InstructBLIP-13B 29.7 60.3 55.4 51.0 41.8 32.4 46.8 31.8 47.42
InstructBLIP-13B-CCoT 34.2 68.7 57.9 63.7 47.9 42.8 67.1 40.0 66.0

LLaVA-1.5-13B 61.3 74.9 71.3 68.9 63.5 51.5 77.04 60 73.2
LLaVA-1.5-13B-CCoT 59.3 76 74.4 71.8 64.3 54.5 79.2 58.8 74.2

Table 5. Detailed Results Table SEEDBench. This table describes the split-level results of our method on all image splits of SEED-
Bench [39]: Instances Counting [IC], Scene Understanding [SU], Instance Identity [IId], Instance Attributes [IA], Instance Location[IL],
Spatial Relation [SR], Visual Reasoning [VR], Text Understanding [TU], Instance Interaction[IIn]].

A.2. Additional Results

Detailed Split Results. We present detailed results of our
method on the individual SEEDBench-Image splits as well
as all of MMBench’s splits which are separated into their
Perception and Reasoning categories. These results shown
in Tables 5, 6, and 7.

LLaVA-Bench Results. LLaVA-Bench is a challenging
hand-designed dataset on a small number of images and
questions for evaluating the effectiveness of LMMs as mul-
timodal chatbots. The questions are designed in a more
open-ended conversational manner, differing greatly from
the other benchmarks presented in the main paper. Instead
of evaluating a simple response to a question, the bench-
mark tests the entire long-form text conversions, meaning
there is a greater burden to account for the language re-
sponse. Examples of LLaVA-Bench are shown in Figure 3.
Even so, we show slight improvements over the baselines–
+0.4% for InstructBLIP and +0.3% for LLaVA-1.5–when
ZS-CoT shows significant degradation (roughly 10% de-
crease). This suggests that our method is also potentially
beneficial for more open-ended visual chat applications,
which is different than multimodal reasoning and VL com-
positional benchmarks.

B. Additional Implementation Details

To run our models on larger benchmarks, we use 8 NVIDIA
RTX 6000 GPUs to split the datasets across multiple GPUs.
Smaller datasets like Winoground and MM-Vet are able to
run individual experiments on a single GPU. Besides the
output token generation length, we use the default gen-
eration parameters (e.g. temperature and no. of beams
in beam search) for each model. For any baseline per-
formance already reported by the official codebase of the
model (e.g. LLaVA-1.5 on SEEDBench or MMBench), we
use the value presented in that model’s corresponding paper.
Please refer to the respective model’s paper for their specific
implementation details of the architecture. In the following
sections, we describe some nuances of our method applied
on different datasets.

B.1. SEEDBench

Dataset. SEED-Bench [39]is a large-scale benchmark de-
signed to provide a comprehensive and objective evaluation
of LMMs, particularly focusing on generative comprehen-
sion. This benchmark comprises 19k multiple-choice ques-
tions, all of which have been annotated by humans. These
questions are structured to cover 12 evaluation dimensions,



Model LR AR RR FP-S FP-C CP
InstructBLIP-13B 11.5 43.6 35.5 36.6 22.3 51.7
InstructBLIP-13B-CCoT 12.5 45.8 40.9 40.7 22.1 56.0
LLaVA-1.5-13B 39.9 74.7 61.6 70.9 59.9 75.4
LLaVA-1.5-13B-CCoT 44.2 72.1 75.3 73.7 59.3 81.2

Table 6. Detailed Results Table MMBench Reasoning. This table describes the split-level results of our method on splits classified as
Reasoning by MMBench [47]: Logic Reasoning [LR], Attribute Reasoning [AR], Relation Reasoning [RR], Fine-Grained(Single) [FG-S],
Fine-Grained (Cross) [FG-C], Coarse Perception [CP].

Coarse Perception FGSI FGCI
Model IT IQ IE IS IS OCR CR OL ARS AC SR
InstructBLIP-13B 16.7 14.8 50.0 37.1 22.6 35.0 53.5 4.9 7.1 2.1 1.0
InstructBLIP-13B-ZS-CoT 16.7 3.0 36.0 36.1 20.8 37.5 39.3 6.17 40.4 2.1 2.2
InstructBLIP-13B-CCoT 61.1 9.3 54.0 82.9 49.1 45.0 60.0 8.64 45.8 11.4 4.4
LLaVA-1.5-13B 83.3 50.0 86.0 95.2 73.6 57.5 81.8 45.7 87.0 61.4 93.0
LLaVA-1.5-13B-ZS-CoT 80.5 55.6 82.0 95.2 81.1 57.5 78.8 40.7 92.2 59.1 26.7
LLaVA-1.5-13B-CCoT 81.5 44.4 86.0 97.1 83.0 62.5 84.8 53.1 87.0 83.9 31.1

Table 7. Detailed Results Table MMBench Perception. This table describes the split-level results of our method on splits classified as
Reasoning by MMBench[]. Category Abbreviations:Fine-Grained Perception (Single-Instance) [FGSI], Fine-Grained Perception (Cross-
Instance) [FGCI]; Split Abbreviations: Image Topic [IT], Image Quality [IQ], Image Emotion [IE], Image Scene [IS], Image Style [IS],
OCR [OCR], Celebrity Recognition [CR], Object Localization [OL], Attribute Recognition (Single-Instance) [ARS], Attribute Recognition
(Cross-Instance) [ARC] Attribute Comparison [AC], Spatial Relationship [SR].

catering to both spatial and temporal understanding.
The development of SEED-Bench involved designing an

advanced pipeline specifically for creating multiple-choice
questions. This pipeline is tailored to target specific evalu-
ation dimensions, thereby enabling the scalability of evalu-
ation data across various domains. Furthermore, the bench-
mark incorporates a blend of automatic filtering and manual
verification processes to enhance the quality of the gener-
ated questions and answers.

For the specific research paper in question, only the im-
age splits of SEED-Bench are utilized for evaluation pur-
poses.
Inference details. We use the official dataset released by
the authors which is available at https://github.
com/AILab-CVC/SEED-Bench. All models evaluated
on SEEDBench use the exact method described in Section 3
of the main paper.

B.2. MMBench

Dataset. MMBench [47] is a novel multimodal bench-
mark created to address the limitations of existing bench-
marks like VQAv2 [5] or COCO Captions[43], which
provide quantitative performance measurements but lack
fine-grained ability assessment and robust evaluation met-
rics. Unlike subjective benchmarks such as OwlEval[83],
which offer comprehensive evaluations of a model’s abili-
ties through human labor but suffer from scalability issues

and bias, MMBench offers a more systematic and objective
approach.

MMBench consists of two primary components: (i) Cu-
rated Dataset. MMBench features a dataset that stands out
from existing benchmarks in terms of the number and vari-
ety of evaluation questions and abilities (e.g. splits that eval-
uate emotion or celebrity recognition to test outside knowl-
edge of an LMM). (ii) CircularEval Strategy with ChatGPT
Integration. The second key component of MMBench is the
CircularEval strategy, which is complemented by the inte-
gration of ChatGPT. This approach is aimed at converting
free-form predictions into predefined choices, leading to a
more robust and reliable evaluation of the LMMs’ predic-
tions.

MMBench is thus a comprehensive evaluation pipeline
that improves upon existing benchmarks in both scale and
depth of assessment.

Inference details. We use the official data and code re-
leased by the authors which is available at https://
github.com/open-compass/MMBench. All mod-
els evaluated on MMBench use the exact method described
in Section 3 of the main paper. Final results are ob-
tained by submitting the output predictions to the offi-
cial MMBench scoring system at https://mmbench.
opencompass.org.cn/mmbench-submission

https://github.com/AILab-CVC/SEED-Bench
https://github.com/AILab-CVC/SEED-Bench
https://github.com/open-compass/MMBench
https://github.com/open-compass/MMBench
https://mmbench.opencompass.org.cn/mmbench-submission
https://mmbench.opencompass.org.cn/mmbench-submission


B.3. Winoground

Dataset. Winoground[68] is designed to evaluate the com-
positional understanding of vision-and-language (VL) mod-
els. It challenges these models to correctly pair text and
images that share the same underlying compositional struc-
ture but differ in the objects involved. Winoground provides
a way to assess whether models truly understand the com-
position of scenes and descriptions, or if they are merely
exploiting superficial correlations in the training data.

The Winoground benchmark consists of 400 sets of im-
ages and captions. Each set includes two images and two
captions, where each image corresponds to one of the cap-
tions. The images and captions are carefully designed to be
compositionally similar but involve different objects. For
example, a set might include an image of a cat chasing a
dog with a corresponding caption, and another image of a
dog chasing a cat with its caption.

The benchmark evaluates VL models on three scores: (1)
Text Score. This score assesses the model’s ability to match
text captions to the correct images. A high text score in-
dicates that the model effectively understands and applies
compositional structures in language. (2) Image Score. This
score evaluates how well the model matches images to the
corresponding text captions. A high image score suggests a
strong understanding of compositional structures in visual
data. (3) Group Score. This score is the average of the
text and image scores. It provides a holistic measure of the
model’s overall performance in understanding and applying
compositional structures across both visual and textual data.

The Winoground benchmark is significant because it
moves beyond traditional benchmarks that often allow mod-
els to succeed by leveraging simple heuristics or biases in
the data. Instead, Winoground requires models to demon-
strate a genuine understanding of the compositional rela-
tionships between objects in images and their descriptions,
demonstrating our model’s value in enhancing composi-
tional visual reasoning in LMMs.
Inference details. We use the official data released by the
authors which is available at https://huggingface.
co/datasets/facebook/winoground. Since we
evaluate on LMM methods that were designed for single-
image inference, we perform a two-step answer extraction
process for the image and group tasks (which have two im-
ages). (1) First, instead of asking for an answer-choice as
in multiple-choice formatted questions, we ask the LMM
to generate reasoning for each image caption pair. (2) Sec-
ondly, both text reasoning responses are prompted to GPT-4
to yield the LMM’s intended answer.

B.4. WHOOPS!

Dataset. The WHOOPS![12] dataset is a distinctive bench-
mark developed to evaluate AI models’ visual common-
sense reasoning, with a particular emphasis on composi-

tional understanding. It consists of 500 synthetic images,
each uniquely designed to defy commonsense norms, ac-
companied by 10874 annotations. These images, crafted
using advanced text-to-image models such as Midjourney,
DALL-E, and Stable-Diffusion, present scenarios that are
logically or physically implausible, thus challenging AI
models to go beyond simple object recognition and delve
into deeper interpretative reasoning.

The dataset is notable for its diverse array of ’weirdness’
categories, encompassing temporal discrepancies, biologi-
cal rules, cultural knowledge, and more. Each image in
WHOOPS! is an invitation for AI models to engage in so-
phisticated multi-step reasoning, connecting visual cues to
knowledge about the world in ways that require a nuanced
understanding of everyday experiences, physical and social
knowledge, and cultural norms.

WHOOPS! offers four distinct tasks for model evalua-
tion: (i) Explanation Generation. Where models must ar-
ticulate detailed reasons behind the unusual nature of an
image. Image Captioning: Involving the summarization
of the images’ content. Cross-Modal Matching: Requir-
ing models to differentiate between detailed and underspec-
ified captions. (ii) Visual Question Answering (VQA). This
task specifically assesses the models’ ability to understand
and interpret compositional elements in the images. In the
context of the research paper, the Visual Question Answer-
ing (VQA) task of the WHOOPS! dataset was chosen for
evaluation. This task is designed to test models’ composi-
tional understanding and reasoning. It requires models to
answer questions that probe their comprehension of the un-
usual or ’weird’ elements within the images, focusing on
their ability to integrate visual information with common-
sense knowledge. This task is particularly relevant for as-
sessing how well AI models grasp the implausible or uncon-
ventional contexts in which objects are depicted, demand-
ing an advanced level of compositional reasoning. By se-
lecting the VQA task from the WHOOPS! dataset, our work
aims to critically evaluate and advance the capabilities of
LMM models in compositional visual understanding.
Inference details. We use the official data released by
the authors which is available at https://whoops-
benchmark.github.io/. For our evaluation on the
VQA split, we use the same answer extraction and evalua-
tion process as the paper [12].

B.5. LLaVA-Bench (In-the-Wild)

Dataset. LLaVA-Bench (In-the-Wild)[45] is a newly devel-
oped benchmark that has been used to evaluate the ability of
LMMs to provide detailed, yet generalized chat responses
to multimodal questions on a variety of images. Given an
image, the LMM is prompted with a multimodal task. The
LMM’s response is compared to GPT-4 generated responses
to assess the quality of the response. Although still in devel-

https://huggingface.co/datasets/facebook/winoground
https://huggingface.co/datasets/facebook/winoground
https://whoops-benchmark.github.io/
https://whoops-benchmark.github.io/


opment, this small, hand-designed benchmark demonstrates
the effectiveness of our method on multimodal chat scenar-
ios.
Inference details. We use the official data released by the
authors which is available at https://github.com/
haotian-liu/LLaVA/blob/main/docs/LLaVA_
Bench.md. For this more open-ended task, we first gen-
erate the zero-shot response. Following this, we use our
method to generate a scene-graph and then improve the
original response. This is to account for the fact that the
dataset resembles a long-form conversation.

C. Qualitative Visualizations
We present further qualitative success and failure cases of
LLaVA-1.5-CCoT in Figure 4.

D. Licenses and Privacy
The license, PII, and consent details of each dataset are in
the respective papers. In addition, we wish to emphasize
that the datasets we use do not contain any harmful or of-
fensive content, as many other papers in the field also use
them. Thus, we do not anticipate a specific negative impact,
but, as with any machine learning method, we recommend
exercising caution.

https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md
https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md
https://github.com/haotian-liu/LLaVA/blob/main/docs/LLaVA_Bench.md


Figure 4. Additional Example Outputs. Above we show some additional examples of our method on both MMBench, WHOOPS!, and
LLaVA-Bench.
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