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A. Formal Definitions and Assumptions
This section is a supplement to the assumptions in Sec. 3.3.
To describe the assumptions, we first introduce the formal
definition of “expansion”.

Definition 1 ((a, d)-expansion). We say that the class-
conditional distribution Pi satisfies (a, d)-expansion if for
all V ⊆ X with Pi(V ) ≤ a, the following holds:

Pi(N (V )) ≥ min{dPi(V ), 1} (1)

If Pi satisfies (a, d)-expansion for all ∀i ∈ [C], then we say
the distribution P satisfies (a, d)-expansion.

Fig Aa illustrate the visual understanding of (a, d)-
expansion.

Using this definition, the formal statements of expansion
and separation assumptions are described as follows.

Assumption 1 (Expansion requirement for unsupervised
learning). We assume that P satisfies (1/2, d)-expansion on
X for d > 1.

Assumption 2 (Separation). We assume P is B-separated
with probability 1−µ by the ground-truth prediction model
F ⋆, as follows: RB(F

⋆) ≤ µ.

The expansion assumption states that the data distribu-
tion of the same class is in a continuous region. This is eas-
ier to understand if we look at an example that does not sat-
isfy the assumption. As shown in Fig Ab, if the assumption
does not hold, there is a small subset V that does not expand
with the data augmentation, i.e., P (V ) = P (N (V )). This
means that the data of the same class are divided into mul-
tiple different regions. Conversely, if the assumption holds,
the data of the same class are distributed within one region.

The separation assumption states that the data of differ-
ent classes are separated, and the predictions of the ground-
truth model among the augmented samples are consistent.
This assumption also requires the data augmentation to
maintain the semantics of the data.
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Figure A. Visual Understanding of Expansion. (a) Definition
of (a, d)-expansion. (b) Example that violates the expansion as-
sumption.

B. Details of Synthetic Data Experiment
In this section, we describe the details of the experiments
with the synthetic data in Sec. 3.3. We also describe a sim-
ilar experiment we conducted using another SFDA method,
AaD [1] to confirm the validity of our theoretical analysis.

B.1. Experimental Setups and Detailed Results

Dataset. For the dataset construction, we basically refer to
the setting in [1], but we slightly change a few points to see
the results more clearly. We construct the source domain
data with two inter-twinning moons; in which each moon
contains 300 samples. We treat each moon as a discrete
class of data. We generate the target domain data by rotating
the source domain data by 35◦ and randomly removing half
of the data of one class. The generated dataset is visualized
in the leftmost column of Fig. B.
Network Architecture and Training Configuration. The
model was a network with three fully connected layers (2
FC−−→ 16 FC−−→ 16 FC−−→ 2) as the model. We train it with

source domain data by using SGD with a learning rate of
1e−2, a momentum parameter of 0.9, and a batch size of
64 for 100 epochs. We treated this source-trained model as
a source-only one. We subsequently trained the model with
the target domain data based on the SHOT-IM loss using
SGD with a learning rate of 1e−3, a momentum parameter
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Figure B. Visualization of the experimental results on SHOT-IM.
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Figure C. Visualization of the experimental results on AaD.

Small
 div

Mod
era

te 
div

La
rge

 div

 

0

20

40

60

80

100

A
cc

ur
ac

y 
[%

]

Source only
Dis only
Dis+Div
Dis+Div w/ decay

(a)

0.0 0.1 0.2 0.3 0.4 0.5
Strength of Augmentation

80

85

90

95

100

A
cc

ur
ac

y 
[%

]

0

5

10

15

20

P
re

di
ct

io
n 

In
co

ns
is

te
nc

y[
%

]Trained Model
Ground-Truth Model

(b)

Figure D. Experimental Results on Synthetic Data with AaD.
(a) Model accuracy w/ and w/o discriminability and diversity
losses. (b) Model accuracy and prediction inconsistency of
ground-truth model against the strength of augmentation.

of 0.9, and a batch size of 64 for 500 epochs. We trained the
Dis-only model without the diversity loss of SHOT-IM. For
the training the Div+Dis model, we set λdiv to 0.1, while
for training the Div+Dis w/ Decay model, we set λdiv to
3.0 · Ldis. We set the variance parameter of 2-D Gaussian
perturbation used for the data augmentation to 0.05 in the
experiment of Tab. 1, while we varied this parameter to
obtain Fig. 2.

Detaled results of Tab. 1. For further analysis, we addi-
tionally experimented with Dis + Div w/o Decay by vary-
ing the weight of the diversity loss. Specifically, we set the
weight λdiv to 0.05 for “small λdiv”, 0.1 for “moderate λdiv”,
and 0.3 for “large λdiv”. The visualized results for Tab. 1 are
shown in Fig. B. We can see that a better decision boundary
is obtained when the model is trained with both discrim-
inability and diversity losses.

B.2. Additional results using AaD.

Dataset. For the dataset construction, we used the same
setting in [1]. We constructed the source domain data with
two inter-twinning moons, in which each moon contained
300 samples, and generated the target domain data by rotat-
ing the source domain data by 30◦. The generated dataset is
illustrated in the leftmost column of Fig. C.
Network Architecture and Training Configuration. We
used the same network architecture and source training
setup as in the experiment with SHOT-IM. We trained the
model with the target domain data based on the AaD loss
by using SGD with a learning rate of 1e−2, momentum pa-
rameter of 0.9, and batch size of 64 for 500 epochs. We
trained the Dis-only model without the diversity loss of
AaD. For training the Div+Dis models, we conducted ex-
periments with several coefficient parameters λdiv, namely,
we set λdiv to 0.1 for small λdiv, 0.75 for moderate λdiv, and
1.5 for large λ. For training the Div+Dis w/ Decay model,
we set the coefficient parameter λdiv = 1.5 · Ldis. We set
the parameter of the 2-D Gaussian perturbation used for the
data augmentation to 0.1 in the experiments, while we var-
ied this parameter in the analysis.
Results. The qualitative and quantitative results are shown
in Fig. C and Fig. D. They are mostly consistent with the re-
sult of those the SHOT-IM experiment. As shown in Fig. C
and Fig. Da, the Dis + Div w/ Decay model performs the
best performance, which is in line with the training objec-
tive (3). In addition, as shown in Fig. Db, the model accu-
racy grows as the strength of the augmentation goes large to
some extent, but if the strength grows too large, the model
accuracy deteriorates as the prediction inconsistency of the
ground-truth model increases. The only difference is that in
AaD, simply adding the diversity loss does not produce an
improvement, which is the reproduced results originally re-
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Table A. Analysis of Augmentation Training (Detailed version of Tab. 5).

Init. Aug Aug Training Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg. ∆AaD

Random
60.1 78.3 81.8 70.3 80.2 79.4 66.6 57.9 82.5 73.8 60.5 86.1 73.1 + 0.4

✓ 60.1 78.6 82.0 69.8 80.2 79.9 67.1 58.3 82.1 74.1 60.6 86.4 73.3 + 0.6

AutoAugment
60.5 79.3 82.1 69.5 79.3 79.6 67.6 58.2 82.2 74.3 60.7 86.3 73.3 + 0.6

✓ 60.7 78.9 82.0 69.9 79.5 79.7 67.1 58.8 82.3 74.2 61.3 86.4 73.4 + 0.7

ported [1]. We suppose that this is because it is inherently
important to decay the coefficient of the diversity loss along
with the training objective (3). The maximizing marginal
entropy loss, which is the diversity loss in SHOT-IM, is a
loss in which the gradient magnitude decreases as the train-
ing progresses, so it can be regarded as implicitly having a
decay mechanism. Therefore, simply adding a diversity loss
does not degrade performance in the case of SHOT-IM. On
the other hand, the diversity loss of AaD does not work like
that of SHOT-IM, meaning that it is necessary to implement
a decay mechanism explicitly.

C. Additional Results
Here, we describe the results of the experiments in more
detail and provide additional analyses we could not include
in the main paper.

C.1. Detailed Results of Analysis

Ablation study of Augmentation Training. Note that we
modified a few hyper-parameters (ηaug = 4e−3, λA =
0.25) when we conducted the analysis with randomly ini-
tialized data augmentation. Tab. A shows the detailed re-
sults of the ablation study on augmentation training. We
can see that the performance with augmentation training is
better in 10 out of 12 pairs in the randomly initialized case
and 8 out of 12 pairs in the AutoAugment initialized case,
demonstrating the validity of our technique.

C.2. Further Analysis of Our Method

Analysis of the coefficient parameter λF . As we men-
tioned in Sec. 4.1, we found in the early study that the heavy
augmentations sampled from A degrade performance, par-
ticularly when we use VisDA2017. We can mitigate this
issue by using the training loss calculated only with weakly
augmented samples. Here, λF controls the balance between
the losses of the heavily augmented samples (LF ) and the
weakly augmented samples (L′

F ).
In this analysis, we confirmed the validity of using both

LF and L′
F by varying the value of λF . We used VisDA2017

for the evaluation, and the other settings were the same as
described in Sec 5.1.

The results are shown in Tab. B. When we finely tuned
λF , the performance of our method reached 88.4%. Us-
ing only heavy data augmentations (λF = 1.0) resulted
in lower accuracy than when not using them (λF = 0.0).

Table B. Analysis of the coefficient parameter λF

λF Per-class Avg.

0.0 (L′
F only) 87.6

0.2 (Our setting) 88.4
0.5 (Simply combing LF and L′

F ) 87.8
1.0 (LF only) 84.6

This indicates that using complicated data augmentations
does not always improve accuracy. Simply combining LF

and L′
F (λF = 0.5) increases accuracy, but by adjusting

λF appropriately, we can obtain an even greater improve-
ment. Note that, on Office-31 and Office-Home, our method
reached sufficient accuracy without any special tuning, so
we set λF to 0.5 in these cases.
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