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In this supplementary material, we first provide detailed
implementation details on each audio-visual main down-
stream task and additional analysis of DeepAVFusion. We
also provide a few demonstrations of sound source localiza-
tion, segmentation, and separation.

A. Implementation Details

A.1. Audio-visual Classification

We conduct audio-visual classification on VGGSounds using
two different downstream evaluation protocols: linear prob-
ing and fine-tuning. In both cases, we attach a linear layer
to the pre-trained encoder as a classification head. Specifi-
cally, we (average) pool audio representations from all time-
frequency patches into a single global audio representation,
visual representations from all spatial patches into a global
image representation, and the representations obtained for
the fusion tokens into a global audio-visual representation.
The input to the linear classifier is a subset of these three
global features. In the main paper, we used only audio and
visual representations. Below, we provide an analysis using
different subsets that include fusion tokens. Linear probe
evaluations only train the linear head to evaluate the quality
of pre-trained features, while fine-tuning evaluations finetune
the full model to assess DeepAVFusion’s ability to provide
strong initializations. In both cases, the models are trained
for 50 epochs using the Adam optimizer [2] with a learning
rate of 1e− 4 and batch size of 128.

A.2. Visually-Guided Sound Source Localization
and Segmentation

We further evaluate our models on sound source localiza-
tion and segmentation, using a supervised transfer learning
protocol. We assess source localization on Flickr-SoundNet,
following the work of [5]. For DeepAVFusion, the localiza-

tion prediction maps ŷ are defined as the cosine similarity
between the global audio representation and the local visual
representations. The full model is then trained to minimize
the average per-pixel binary cross entropy to ground truth
maps y using the Adam optimizer [2] for 30 epochs, with a
learning rate of 1e− 4 and a batch size of 128. To compare
with prior work, we use the same downstream evaluation
protocol (both the prediction head and training procedure),
while using the different objectives proposed in the orig-
inal papers to pre-train the same ViT-Base backbones (as
used by DeepAVFusion). Source segmentation is evaluated
on AVSBench using the training protocol of prior work [8].
Specifically, to compute the segmentation maps, we fuse the
global audio representation with the local visual representa-
tions, and upsample these localized audio-visual represen-
tations using an upsampling decoder with three sequential
up-convolution blocks. The full model is then trained to
minimize the binary cross entropy (BCE) between the seg-
mentation maps predicted from the upsampling decoder and
ground-truth masks. The model is trained for 20 epochs
using the Adam optimizer [2] with a learning rate of 1e− 4
and a batch size of 128.

A.3. Sound Source Separation

For sound source separation, we follow the training pro-
tocol of [4, 7]. We attach an audio U-Net decoder to the
pre-trained audio-visual encoders. The decoder receives the
representations from an audio mixture and from the target
image (containing the object whose sound should be sepa-
rated). Then, through a series of transposed convolutions
and an output head, the decoder predicts a time-frequency
separation mask, which is used to modulate the STFT of the
input mixture in order to predict the separated sound source.
Similarly to [4, 7], the model is trained to minimize the bi-
nary cross-entropy between the predicted separation masks
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Figure 1. Qualitative visualization of sound source localization. The proposed DeepAVFusion produces more accurate and high-quality localization maps
for each source.

and binary target masks, which identify the time-frequency
bins where the target source is the most dominant component
in the mixture. The model is trained for 20 epochs using
the Adam optimizer [2] with a learning rate of 1e− 4 and a
batch size of 128.

B. Demonstrations of model capabilities

B.1. Sound Source Localization and Segmentation

In order to qualitatively evaluate the localization and segmen-
tation masks, we compare the proposed DeepAVFusion with
SLAVC [3] and Mix-and-Localize [1] on sound source local-
ization and segmentation in Figure 1 and Figure 2. We can
observe that the quality of localization maps and masks gen-
erated by our framework are indeed superior to prior state-
of-the-art methods. For example, the performance gains of
DeepAVFusion over Mix-and-Localize [1] (a strong multi-
task approach with both localization and separation) can be
easily seen in these demonstrations. These visualizations
showcase the effectiveness of the proposed DeepAVFusion in
sound source localization and segmentation.

B.2. Sound Source Separation

In Figure 3, we qualitatively compare the proposed
DeepAVFusion with audio-visual separation baselines,

Sound-of-Pixels [7], CCoL [6], and OneAVM [4] in terms
of reconstructed source spectrograms. Once again, we can
observe the higher quality of spectrograms generated by our
method, even when compared to OneAVM [4], the state-
of-the-art model which jointly optimized for recognition,
localization, and source separation. These visualizations fur-
ther showcase the superiority of the proposed DeepAVFusion
in sound source separation.
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Figure 2. Qualitative visualization of sound source segmentation. The proposed DeepAVFusion produces more accurate and high-quality segmentation
masks for each source.
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Figure 3. Qualitative visualization of sound source separation. (a) Ground-Truth; (b) Sound-of-Pixels; (c) CCoL; (d) OneAVM; (e) DeepAVFusion (ours).
The proposed DeepAVFusion separates each source more accurately.
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