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6. Dataset Descriptions

Dataset Modality Images Resolutions Train Valid Test
ISIC2018 [23] Dermoscopy 2594 Variable 1868 465 261

COVID19-1 [32] Radiology 1277 512 × 512 643 251 383
BUSI [3] Ultrasound 645 Variable 324 160 161

2018 Data Science Bowl [6] Microscopy 670 Variable 483 120 67
CVC-ClinicDB [5] Colonoscopy 612 384 × 288 490 60 62
Kvasir-SEG [30] Colonoscopy 1000 Variable 800 100 100
REFUGE [45] Fundus Image 400 2124 × 2056 280 40 80

Table 5. Details of the medical segmentation seen clinical settings
used in our experiments.

Dataset Modality Images Resolutions Test
PH2 [41] Dermoscopy 200 767 × 576 200

COVID19-2 [1] Radiology 2535 512 × 512 2535
STU [74] Ultrasound 42 Variable 42

MonuSeg2018 [12] Microscopy 82 256 × 256 82
CVC-300 [61] Colonoscopy 60 574 × 500 60

CVC-ColonDB [57] Colonoscopy 380 574 × 500 380
ETIS [54] Colonoscopy 196 1255 × 966 196

Drishti-GS [55] Fundus Image 50 Variable 50

Table 6. Details of the medical segmentation unseen clinical set-
tings used in our experiments.

• Breast Ultrasound Segmentation: The BUSI [3] com-
prises 780 images from 600 female patients, including
133 normal cases, 437 benign cases, and 210 malignant
tumors. On the other hand, the STU [74] includes
only 42 breast ultrasound images collected by Shantou
University. Due to the limited number of images in the
STU, it is used only to evaluate the generalizability of
each model across different datasets.

• Skin Lesion Segmentation: The ISIC 2018 [23] comprises
2,594 images with various sizes. We randomly selected
train, validation, and test images with 1,868, 465, and
261, respectively. And, we used PH2 [41] to evaluate
the domain generalizability of each model. Note that
ISIC2018 [23] and PH2 [41] are seen, and unseen clinical
settings, respectively.

• COVID19 Lung Infection Segmentation: COVID19-1
[32] comprises 1,277 high-quality CT images. We
randomly selected train, validation, and test images
with 643, 251, and 383, respectively. And, we used
COVID19-2 [1] to evaluate the domain generalizability
of each model. Note that COVID19-2 [1] is used for only
testing.

• Cell Segmentation: The 2018 Data Science Bowl dataset
[6] comprises 670 microscopy images. The dataset
consisted of training, validate, and test images with 483,
120, and 67, respectively. We also used MonuSeg2018
[12] for evaluating the domain generalizability of each
model. Note that MonuSeg2018 [12] is used for only
testing.

• Polyp Segmentation: Colorectal cancer is the third most
prevalent cancer globally and the second most common
cause of death. It typically originates as small, non-
cancerous (benign) clusters of cells known as polyps,
which develop inside the colon. To evaluate the proposed
model, we have used five benchmark datasets, namely
CVC-ColonDB [57], ETIS [54], Kvasir [30], CVC-300
[61], and CVC-ClinicDB [5]. The same training set as
the latest image polyp segmentation method has been
adopted, consisting of 900 samples from Kvasir and
550 samples from CVC-ClinicDB for training. The
remaining images and the other three datasets are used
for only testing.

• Fundus Image Segmentation: To evaluate our method on
multi-label segmentation, we utilize the training part of
the REFUGE challenge dataset [45] as the training (280)
and testing (80) dataset, and the public Drishti-GS [55]
dataset as the testing (50) dataset.

7. Efficiency Analysis

Method Parameters (M) inference speed (ms)
UNet [51] 34.5 10.1

AttUNet [44] 35.6 13.8
UNet++ [73] 36.6 22.9
CENet [22] 18.9 10.5

TransUNet [7] 53.4 93.4
FRCUNet [4] 40.8 13.4

MSRFNet [56] 22.5 73.8
HiFormer [26] 34.1 24.9

DCSAUNet [66] 25.9 24.3
M2SNet [72] 26.5 32.1
MADGNet 31.4 24.0

Table 7. The number of parameters (M) and inference speed (ms)
of different models.

7.1. Parameter Efficiency Proof

Scale Decomposition. For further efficiency, we replace the
conventional convolution with kernel size 2s+ 1 by dilated
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Figure 8. The training results of αs
3 and βs

3 for each modalities ((a) Ultrasound, (b) Microscopy, (c) Dermoscopy, (d) Colonoscopy, and (e)
Radiology) where s ∈ {1, 2, 3}.

Figure 9. Frequency selection strategies (Top, Bot, Low) [49]. (uk, vk) denotes the frequency indices according to frequency selection
strategy.

convolution with a kernel size of 3 and dilation size of s.
For instance, in Fig. 2. (b), the convolution with kernel size
of 5 and 7 in second and third scale branch are replaced into
the dilated convolution with a kernel size of 3 and dilation
size of 2 and 3, respectively. This replacement can achieve
a parameter reduction of 9/(2s + 1)2 in each scale branch.
Suppose that the number of channel at i-th MFMSA block is
C. Then, by channel reduction ratio γ ∈ (0, 1), the number
of parameters for each scale branch is 9× C2γs−1.

MFCA. Note that MFCA contains two fully-connected

layer W1 ∈ RCγs−1×Cγs−1

r and W2 ∈ R
Cγs−1

r ×Cγs−1

with reduction ratio r. Then, the number of parameters in
MFCA is Cγs−1 × Cγs−1 × 1

r × 2.

MSSA. Firstly, to extract attention map from frequency-
recalibrated feature map X̂s

i , we apply a 2D convolution

operation with kernel size 1. And then, to aggregate each
refined features from different scale branches, we restore
the number of channels into C. Hence, the number of pa-
rameters in MSSA is Cγs−1 + 9× C2γs−1.
MFMSA block. Then, we can approximate the number of
parameters at s-th scale branch as follows:

ps = 9× C2γs−1 + Cγs−1 × Cγs−1 × 1

r
× 2

+ Cγs−1 + 9× C2γs−1

= Cγs−1

(
18C + Cγs−1 × 2

r
+ 1

) (11)

If we do not introduce the channel reduction ratio γ, then
the number of parameters at each scale is p = C(18C +
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Algorithm 2 Ensemble Sub-Decoding Module for Multi-
task Learning with Deep Supervision in Multi-label Seg-
mentation
Input: Refined feature map Yi from i-th MFMSA block
Output: Core task prediction Tc,m

i and sub-task predic-
tions {Ts1,m

i , . . . ,TsL,m
i } at i-th decoder for each m-th la-

bel.
1: for m = 1, 2, . . . ,M do
2: Pc,m

i = Conv2D1(Yi)
3: for l = 1, 2, . . . , L do
4: Psl,m

i = Conv2D1(Yi × σ
(
P

sl−1,m
i

)
).

5: end for
6: TsL,m

i = Up5−i (P
sL,m
i )

7: for l = L− 1, . . . , 0 do
8: Tsl,m

i = Up5−i (P
sl,m
i ) +T

sl+1,m
i

9: end for
10: Om

i = {Tc,m
i ,Ts1,m

i , . . . ,TsL,m
i }

11: end for
12: return {O1

i , . . . ,O
M
i }

2C/r+ 1). Then, we can calculate the parameter reduction
ratio ps

p as follows:

ps
p

=
Cγs−1

(
18C + Cγs−1 × 2

r + 1
)

C(18C + 2C
r + 1)

= γs−1

(
18C + Cγs−1 × 2

r + 1

18C + 2C
r + 1

)

≈ γs−1

(
18C + Cγs−1 × 2

r

18C + 2C
r

)

= γs−1

(
18r + 2γs−1

18r + 2

)
=
(
γs−1

)2( 18r
γs−1 + 2

18r + 2

)

≈
(
γs−1

)2( 18r
γs−1

18r

)
= γs−1

(12)

8. Ensemble Sub-Decoding Module for Multi-
label Segmentation

In this section, we show that E-SDM can be utilized to any
segmentation dataset with M multi-label.
Forward Stream. During the forward stream, core and
sub-task pseudo predictions {Pc,m

i ,Ps1,m
i , . . . ,PsL,m

i } for
each label m ∈ {1, 2, . . . ,M} are produced at i-th decoder
stage as follows:

{
Pc,m

i = Conv2D1(Yi)

Psl,m
i = Conv2D1(Yi × σ(P

sl−1,m
i )) for l = 1, . . . , L

(13)
where Ps0,m

i = Pc,m
i . This stream enables the follow-

ing sub-task prediction cascadingly focus on the region by
spatial attention starting from core pseudo prediction Pc,m

i .
Backward Stream. After producing L-th sub-task pseudo
prediction PsL,m

i , to produce final core task prediction
Tc,m

i for m-th label, we apply backward stream as follows:

{
TsL,m

i = Up5−i (P
sL,m
i )

Tsl,m
i = Up5−i (P

sl,m
i ) +T

sl+1,m
i for l = 0, . . . , L− 1

(14)
where Ts0,m

i = Tc,m
i . To further analyze the Eq 14, we

can recursively rewrite from core task Tc,m
i as follows:

Tc,m
i = Ts0,m

i = Up5−i (P
s0,m
i ) +Ts1,m

i

=
[
Up5−i (P

s0,m
i ) + Up5−i (P

s1,m
i )

]
+Ts2,m

i = · · ·

=

L∑
l=0

Up5−i (P
sl,m
i )

(15)

Consequently, E-SDM can be interpreted as an ensemble of
predictions between different tasks for describing the same
legion for each m-th label. Algorithm 2 describes the de-
tailed training algorithm for E-SDM in multi-label segmen-
tation.

9. More Detailed Ablation Study on MADGNet
9.1. Ablation on Backbone Model

Backbone Seen Datasets ([3, 5, 6, 23, 30, 32])
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

ResNet50 [25] 86.9 80.6 84.6 84.9 91.9 2.3
Res2Net50 [20] 87.1 80.9 83.1 85.0 92.0 2.4
ViT-B-16 [13] 87.5 81.2 85.0 85.1 92.3 2.4

ResNeSt50 [70] (Ours) 88.5 82.3 85.9 85.7 92.8 2.4

Backbone Unseen Datasets ([1, 12, 41, 54, 57, 61, 74])
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

ResNet50 [25] 69.1 61.0 67.6 73.8 80.7 6.2
Res2Net50 [20] 70.2 61.8 68.7 74.2 81.5 5.9
ViT-B-16 [13] 69.0 61.6 67.8 75.4 81.1 4.9

ResNeSt50 [70] (Ours) 77.1 68.1 75.0 77.2 87.0 6.2

Table 8. Quantitative results for each Seen ([3, 5, 6, 23, 30, 32])
and Unseen ([1, 12, 41, 54, 57, 61, 74]) datasets according to back-
bone network. We presents the mean performance for each dataset.

In this section, we present the performance of
MADGNet according to various backbone network
(ResNet50 [25], Res2Net50 [20], ViT-B-16 [13], and
ResNeSt50 [70] (Ours)) in Tab. 8. We report the mean
performance of seen and unseen datasets.
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Figure 10. Comparison of parameters (M) vs segmentation perfor-
mance (DSC) according to number of scale S on average for (a)
seen and (b) unseen datasets.

Figure 11. Number of frequency F vs segmentation performance
(DSC) on average for (a) seen and (b) unseen datasets.

9.2. Hyperparameter on MADGNet

Number of Scale branch S.

Scale S
Seen Datasets ([3, 5, 6, 23, 30, 32])

DSC ↑ mIoU ↑ Fw
β ↑ Sα ↑ Emax

ϕ ↑ MAE ↓
1 86.7 81.0 84.5 84.8 91.6 2.4
2 88.0 81.7 85.5 85.4 92.6 2.3

3 (Ours) 88.5 82.3 85.9 85.7 92.8 2.4
4 87.8 81.5 85.3 85.3 92.6 2.3
5 88.1 81.9 85.7 85.5 92.7 2.3
6 87.6 81.9 85.3 85.3 92.7 2.4

Scale S
Unseen Datasets ([1, 12, 41, 54, 57, 61, 74])

DSC ↑ mIoU ↑ Fw
β ↑ Sα ↑ Emax

ϕ ↑ MAE ↓
1 66.7 59.1 66.0 73.7 79.4 9.6
2 72.3 64.1 70.8 74.9 83.8 5.1

3 (Ours) 77.1 68.1 75.0 77.2 87.0 6.2
4 72.4 63.7 70.6 74.6 82.3 8.3
5 71.8 63.6 70.4 75.8 83.5 5.4
6 71.8 63.6 70.5 76.4 84.0 4.8

Table 9. Quantitative results for each Seen ([3, 5, 6, 23, 30, 32])
and Unseen ([1, 12, 41, 54, 57, 61, 74]) datasets according to the
number of scale S. We presents the mean performance for each
domain.

In this section, we present the performance of
MADGNet according to the number of scales S ∈
{1, 2, 3, 4, 5, 6} with F = 16 in Tab. 9 and Fig. 10. We
report the mean performance of seen and unseen datasets.
Number of Frequency branch K.

In this section, we present the performance of
MADGNet according to the number of frequencies F ∈
{1, 2, 4, 8, 16, 32} with S = 3 in Tab. 10 and Fig. 11. We

Frequency K
Seen Datasets ([3, 5, 6, 23, 30, 32])

DSC ↑ mIoU ↑ Fw
β ↑ Sα ↑ Emax

ϕ ↑ MAE ↓
1 87.8 81.6 85.4 85.3 92.5 2.3
2 87.7 81.5 85.3 85.2 92.6 2.3
4 87.8 81.5 85.3 85.3 92.5 2.4
8 87.8 81.5 85.3 85.3 92.4 2.3

16 (Ours) 88.5 82.3 85.9 85.7 92.8 2.4
32 87.9 81.7 85.5 85.3 92.7 2.3

Frequency K
Unseen Datasets ([1, 12, 41, 54, 57, 61, 74])

DSC ↑ mIoU ↑ Fw
β ↑ Sα ↑ Emax

ϕ ↑ MAE ↓
1 72.0 63.7 70.4 75.9 83.3 5.6
2 71.8 63.7 70.4 76.3 83.8 5.3
4 72.2 64.0 70.9 76.8 84.6 4.6
8 71.3 63.0 69.7 75.3 82.9 6.1

16 (Ours) 77.1 68.1 75.0 77.2 87.0 6.2
32 73.1 64.1 70.9 74.6 82.5 7.8

Table 10. Quantitative results for each Seen ([3, 5, 6, 23, 30, 32])
and Unseen ([1, 12, 41, 54, 57, 61, 74]) datasets according to the
number of frequency K. We presents the mean performance for
each domain.

report the mean performance of seen and unseen datasets.
Frequency Selection Strategy (Top vs Bot vs Low).

Strategy Seen Datasets ([3, 5, 6, 23, 30, 32])
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

Top (Ours) 88.5 82.3 85.9 85.7 92.8 2.4
Bot 87.7 81.4 85.0 85.2 92.4 2.4
Low 87.1 80.5 84.3 86.2 92.4 2.0

Strategy Unseen Datasets ([1, 12, 41, 54, 57, 61, 74])
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

Top (Ours) 77.1 68.1 75.0 77.2 87.0 6.2
Bot 72.1 63.5 70.3 74.3 82.9 7.3
Low 70.1 62.5 69.2 75.8 82.8 5.0

Table 11. Quantitative results for each Seen ([3, 5, 6, 23, 30, 32])
and Unseen ([1, 12, 41, 54, 57, 61, 74]) datasets according to fre-
quency selection strategies. We presents the mean performance for
each domain.

In this section, we present the performance of
MADGNet according to frequency selections Top (Ours),
Bot, and Low with S = 3 and F = 16 in Tab. 11. The
set of DCT basis images according to each frequency selec-
tion strategy can be seen in the Fig. 9. We report the mean
performance of seen and unseen datasets.

10. Technical Innovation, Design Principle and
Interpretability of MADGNet

Motivated by papers [35, 65], to extract discriminative fea-
tures in both the frequency and spatial domains, we intro-
duced dual attention modules with multiple statistic infor-
mation of frequency (MFCA) and two learnable informa-
tion flow parameters in multi-scale (MSSA). The causal ef-
fect of MFMSA block is interpreted as follows: 1) MFCA
emphasizes the salient features while reducing the influ-
ence of noisy features by focusing on the frequency of in-
terest, characterized by high variance of frequency in med-
ical domain (Fig. 1). 2) MSSA captures more reliable dis-
criminative boundary cues (Fig. 6) for lesions of various
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sizes by combining foreground and background attention
with multi-scale attention and information flow parameters.
Our approach distinguishes itself by successfully integrat-
ing both attentions with dilated convolution and downsam-
pling, a pioneering endeavor in the medical domain.

11. Metrics Descriptions
• Mean Dice Similarity Coefficient (DSC) measures the

similarity between two samples and is widely used in
assessing the performance of segmentation tasks, such as
image segmentation or object detection. Higher is better.

• Mean Intersection over Union (IoU) measures the ratio
of the intersection area to the union area of the predicted
and ground truth masks in segmentation tasks. Higher is
better.

• Mean Weighted F-Measure Fw
β is a metric that combines

precision and recall into a single value by calculating
the harmonic mean. ”Weighted” often implies that it
might be weighted by class frequency or other factors
to provide a balanced measure across different classes.
Higher is better.

• Mean S-Measure Sα is used to evaluate the quality
of image segmentation, specifically focusing on the
structural similarity between the predicted and ground
truth segmentation. Higher is better.

• Mean E-Measure Emax
ϕ assesses the edge accuracy in

edge detection or segmentation tasks. It evaluates how
well the predicted edges align with the ground truth
edges. Higher is better.

• Mean Mean Absolute Error (MAE) calculates the average
absolute differences between predicted and ground truth
values. Lower is better.

12. More Qualtative and Quantitative Results
In this section, we provide the quantitative results with var-
ious metrics in Tab. 12, 13, 14, 15, and 16. We report the
mean performance of three trials for all results. (·) denotes
a standard deviation of three trials. Red and Blue are the
first and second best performance results, respectively. We
also present more various qualitative results on datasets in
Fig. 12, 13, 14, 15, and 16.

Method ISIC2018 [23] ⇒ ISIC2018 [23]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 87.3 (0.8) 80.2 (0.7) 87.9 (0.0) 80.4 (0.1) 91.3 (0.0) 4.7 (0.0)

AttUNet [44] 87.8 (0.1) 80.5 (0.1) 86.5 (0.2) 80.5 (0.1) 92.0 (0.1) 4.5 (0.0)

UNet++ [73] 87.3 (0.2) 80.2 (0.1) 86.3 (0.2) 80.1 (0.1) 91.6 (0.2) 4.7 (0.0)

CENet [22] 89.1 (0.2) 82.1 (0.1) 88.1 (0.2) 81.3 (0.1) 93.0 (0.2) 4.3 (0.1)

TransUNet [7] 87.3 (0.2) 81.2 (0.2) 88.6 (0.2) 80.8 (0.2) 91.9 (0.2) 4.2 (0.1)

FRCUNet [4] 88.9 (0.1) 83.1 (0.2) 89.3 (0.0) 82.0 (0.1) 93.9 (0.2) 3.7 (0.1)

MSRFNet [56] 88.2 (0.2) 81.3 (0.2) 86.9 (0.2) 80.7 (0.1) 92.0 (0.2) 4.7 (0.1)

HiFormer [26] 88.7 (0.5) 81.9 (0.5) 87.6 (0.6) 80.8 (0.5) 92.6 (0.5) 4.4 (0.3)

DCSAUNet [66] 89.0 (0.3) 82.0 (0.3) 87.8 (0.3) 81.4 (0.1) 92.9 (0.3) 4.4 (0.1)

M2SNet [72] 89.2 (0.2) 83.4 (0.2) 88.9 (0.1) 81.8 (0.1) 93.8 (0.1) 3.7 (0.0)

MADGNet 90.2 (0.1) 83.7 (0.2) 89.2 (0.2) 82.0 (0.1) 94.1 (0.3) 3.6 (0.2)

Method ISIC2018 [23] ⇒ PH2 [41]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 90.3 (0.1) 83.5 (0.1) 88.4 (0.1) 74.8 (0.1) 90.8 (0.1) 6.9 (0.0)

AttUNet [44] 89.9 (0.2) 82.6 (0.3) 87.3 (0.3) 74.8 (0.2) 90.8 (0.2) 6.7 (0.2)

UNet++ [73] 88.0 (0.3) 80.1 (0.3) 85.7 (0.2) 73.2 (0.1) 89.2 (0.2) 7.9 (0.1)

CENet [22] 90.5 (0.1) 83.3 (0.1) 87.3 (0.1) 75.1 (0.0) 91.5 (0.1) 6.0 (0.1)

TransUNet [7] 89.5 (0.3) 82.1 (0.4) 86.9 (0.4) 74.3 (0.2) 90.3 (0.2) 6.7 (0.2)

FRCUNet [4] 90.6 (0.1) 83.4 (0.2) 87.4 (0.2) 75.4 (0.2) 91.7 (0.1) 5.9 (0.1)

MSRFNet [56] 90.5 (0.3) 83.5 (0.3) 87.5 (0.3) 75.0 (0.0) 91.4 (0.2) 6.0 (0.3)

HiFormer [26] 86.9 (1.6) 79.1 (1.8) 83.2 (1.9) 72.9 (1.1) 88.6 (1.4) 8.0 (0.9)

DCSAUNet [66] 89.0 (0.4) 81.5 (0.3) 85.7 (0.2) 74.0 (0.3) 90.2 (0.3) 6.9 (0.4)

M2SNet [72] 90.7 (0.3) 83.5 (0.5) 87.6 (0.4) 75.5 (0.3) 92.0 (0.2) 5.9 (0.2)

MADGNet 91.3 (0.1) 84.6 (0.1) 88.4 (0.1) 76.2 (0.1) 92.8 (0.1) 5.1 (0.1)

Table 12. Segmentation results on Skin Lesion Segmentation
(Dermatoscopy) [23, 41]. We train each model on ISIC2018 [23]
train dataset and evaluate on ISIC2018 [23] and PH2 [41] test
datasets.

Method COVID19-1 [32] ⇒ COVID19-1 [32]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 47.7 (0.6) 38.6 (0.6) 36.1 (0.2) 69.6 (0.1) 62.7 (0.7) 2.1 (0.0)

AttUNet [44] 57.5 (0.2) 48.4 (0.2) 45.3 (1.8) 74.5 (1.2) 66.0 (2.3) 1.7 (0.0)

UNet++ [73] 65.6 (0.7) 57.1 (0.8) 54.4 (8.9) 78.8 (3.3) 73.2 (5.2) 1.3 (0.3)

CENet [22] 76.3 (0.4) 69.2 (0.5) 64.4 (0.2) 83.2 (0.2) 76.6 (0.3) 0.6 (0.0)

TransUNet [7] 75.6 (0.4) 68.8 (0.2) 63.4 (0.2) 82.7 (0.3) 75.5 (0.1) 0.7 (0.0)

FRCUNet [4] 77.3 (0.3) 70.4 (0.2) 66.0 (0.4) 84.0 (0.2) 78.4 (0.6) 0.7 (0.0)

MSRFNet [56] 75.2 (0.4) 68.0 (0.4) 63.4 (0.4) 82.7 (0.2) 76.3 (0.6) 0.8 (0.0)

HiFormer [26] 72.9 (1.4) 63.3 (1.5) 60.2 (1.0) 80.8 (0.8) 76.0 (1.0) 0.8 (0.1)

DCSAUNet [66] 75.3 (0.4) 68.2 (0.4) 63.1 (0.6) 83.0 (0.3) 77.3 (0.5) 0.7 (0.0)

M2SNet [72] 81.7 (0.4) 74.7 (0.5) 68.3 (0.7) 85.7 (0.2) 80.1 (0.4) 0.6 (0.0)

MADGNet 83.7 (0.2) 76.8 (0.2) 70.2 (0.2) 86.3 (0.2) 81.5 (0.1) 0.5 (0.0)

Method COVID19-1 [32] ⇒ COVID19-2 [1]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 47.1 (0.7) 37.7 (0.6) 46.7 (0.8) 68.7 (0.2) 68.6 (1.0) 1.0 (0.0)

AttUNet [44] 43.7 (0.8) 35.2 (0.8) 44.5 (0.7) 67.9 (0.5) 64.0 (0.6) 1.0 (0.0)

UNet++ [73] 50.5 (3.8) 40.9 (3.7) 50.6 (4.6) 69.8 (1.3) 75.7 (2.6) 1.0 (0.2)

CENet [22] 60.1 (0.3) 49.9 (0.3) 61.1 (0.3) 73.4 (0.1) 80.1 (0.3) 1.1 (0.0)

TransUNet [7] 56.9 (1.0) 48.0 (0.7) 58.0 (0.1) 72.5 (0.2) 80.0 (1.3) 0.8 (0.0)

FRCUNet [4] 62.9 (1.1) 52.7 (0.9) 63.7 (1.2) 74.5 (0.3) 82.1 (0.7) 1.4 (0.2)

MSRFNet [56] 58.3 (0.8) 48.4 (0.6) 59.1 (0.9) 72.7 (0.2) 79.8 (0.8) 1.0 (0.1)

HiFormer [26] 54.1 (1.0) 44.5 (0.8) 55.2 (1.0) 70.9 (0.5) 78.0 (0.7) 1.0 (0.1)

DCSAUNet [66] 52.4 (1.2) 44.0 (0.7) 52.0 (1.2) 71.3 (0.1) 76.3 (3.1) 1.0 (0.1)

M2SNet [72] 68.6 (0.1) 58.9 (0.2) 68.5 (0.2) 76.9 (0.1) 86.1 (0.4) 1.1 (0.1)

MADGNet 72.2 (0.3) 62.6 (0.3) 72.3 (0.5) 78.2 (0.1) 88.1 (0.2) 1.0 (0.1)

Table 13. Segmentation results on COVID19 Infection Segmen-
tation (Radiology) [1, 32]. We train each model on COVID19-1
[32] train dataset and evaluate on COVID19-1 [32] and COVID19-
2 [1] test datasets.
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Figure 12. Qualitative comparison of other methods and MADGNet on Skin Lesion Segmentation (Dermoscopy) [23, 41]. (a) Input
images, (b) UNet [51]. (c) AttUNet [44], (d) UNet++ [73], (e) CENet [22], (f) TransUNet [7], (g) FRCUNet [4], (h) MSRFNet [56], (i)
HiFormer [26], (j) DCSAUNet [66], (k) M2SNet [72], (l) MADGNet (Ours). Green and Red lines denote the boundaries of the ground
truth and prediction, respectively.
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Figure 13. Qualitative comparison of other methods and MADGNet on COVID19 Infection Segmentation (Radiology) [1, 32]. (a) Input
images, (b) UNet [51]. (c) AttUNet [44], (d) UNet++ [73], (e) CENet [22], (f) TransUNet [7], (g) FRCUNet [4], (h) MSRFNet [56], (i)
HiFormer [26], (j) DCSAUNet [66], (k) M2SNet [72], (l) MADGNet (Ours). Green and Red lines denote the boundaries of the ground
truth and prediction, respectively.
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Figure 14. Qualitative comparison of other methods and MADGNet on Breast Tumor Segmentation (Ultrasound) [3, 74]. (a) Input
images, (b) UNet [51]. (c) AttUNet [44], (d) UNet++ [73], (e) CENet [22], (f) TransUNet [7], (g) FRCUNet [4], (h) MSRFNet [56], (i)
HiFormer [26], (j) DCSAUNet [66], (k) M2SNet [72], (l) MADGNet (Ours). Green and Red lines denote the boundaries of the ground
truth and prediction, respectively.
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Figure 15. Qualitative comparison of other methods and MADGNet on Cell Segmentation (Microscopy) [6, 12]. (a) Input images, (b)
UNet [51]. (c) AttUNet [44], (d) UNet++ [73], (e) CENet [22], (f) TransUNet [7], (g) FRCUNet [4], (h) MSRFNet [56], (i) HiFormer
[26], (j) DCSAUNet [66], (k) M2SNet [72], (l) MADGNet (Ours). Green and Red lines denote the boundaries of the ground truth and
prediction, respectively.
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Figure 16. Qualitative comparison of other methods and MADGNet on Polyp Segmentation (Colonoscopy) [5, 30, 54, 57, 61]. (a) Input
images, (b) UNet [51]. (c) AttUNet [44], (d) UNet++ [73], (e) CENet [22], (f) TransUNet [7], (g) FRCUNet [4], (h) MSRFNet [56], (i)
HiFormer [26], (j) DCSAUNet [66], (k) M2SNet [72], (l) MADGNet (Ours). Green and Red lines denote the boundaries of the ground
truth and prediction, respectively.
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Method BUSI [3] ⇒ BUSI [3]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 69.5 (0.3) 60.2 (0.2) 67.2 (0.3) 76.9 (0.1) 83.2 (0.2) 4.8 (0.0)

AttUNet [44] 71.3 (0.4) 62.3 (0.6) 68.9 (0.5) 78.1 (0.3) 84.4 (0.1) 4.8 (0.0)

UNet++ [73] 72.4 (0.1) 62.5 (0.2) 68.7 (0.3) 78.4 (0.2) 85.0 (0.2) 5.0 (0.1)

CENet [22] 79.7 (0.6) 71.5 (0.5) 78.1 (0.6) 82.8 (0.3) 91.1 (0.2) 3.9 (0.0)

TransUNet [7] 75.5 (0.5) 68.4 (0.1) 73.8 (0.2) 79.8 (0.1) 88.6 (0.6) 4.2 (0.2)

FRCUNet [4] 81.2 (0.2) 73.3 (0.3) 79.9 (0.3) 83.5 (0.2) 91.9 (0.1) 3.7 (0.1)

MSRFNet [56] 76.6 (0.7) 68.1 (0.7) 75.1 (0.9) 80.9 (0.3) 88.5 (0.4) 4.2 (0.1)

HiFormer [26] 79.3 (0.2) 70.8 (0.1) 77.7 (0.0) 82.3 (0.1) 90.8 (0.3) 4.1 (0.1)

DCSAUNet [66] 73.7 (0.5) 65.0 (0.5) 71.5 (0.4) 79.6 (0.3) 86.0 (0.3) 4.6 (0.1)

M2SNet [72] 80.4 (0.8) 72.5 (0.7) 78.7 (0.6) 83.0 (0.5) 91.2 (0.4) 4.1 (0.2)

MADGNet 81.3 (0.4) 73.4 (0.4) 79.5 (0.4) 83.8 (0.2) 91.7 (0.3) 3.6 (0.1)

Method BUSI [3] ⇒ STU [74]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 71.6 (1.0) 61.6 (0.7) 71.6 (0.8) 76.1 (0.4) 82.4 (0.9) 5.2 (0.2)

AttUNet [44] 77.0 (1.6) 68.0 (1.7) 76.4 (1.2) 79.8 (1.0) 86.7 (1.4) 4.4 (0.3)

UNet++ [73] 77.3 (0.4) 67.8 (0.3) 76.1 (0.3) 79.4 (0.5) 87.6 (0.3) 4.4 (0.1)

CENet [22] 86.0 (0.7) 77.2 (0.9) 84.2 (0.6) 84.6 (0.4) 93.7 (0.4) 2.8 (0.2)

TransUNet [7] 41.4 (9.5) 32.1 (4.2) 40.8 (8.7) 60.2 (4.3) 58.1 (8.4) 9.7 (0.7)

FRCUNet [4] 86.5 (2.3) 77.2 (2.7) 84.9 (2.1) 85.2 (1.6) 94.1 (2.0) 2.8 (0.5)

MSRFNet [56] 84.0 (5.5) 75.2 (8.2) 82.5 (5.0) 83.5 (5.7) 92.2 (3.3) 3.1 (0.2)

HiFormer [26] 80.7 (2.9) 71.3 (3.2) 78.9 (3.0) 81.2 (1.6) 90.1 (2.2) 3.7 (0.5)

DCSAUNet [66] 86.1 (0.5) 76.5 (0.8) 82.7 (0.8) 84.9 (0.4) 94.7(0.5) 3.2 (0.1)

M2SNet [72] 79.4 (0.7) 69.3 (0.6) 76.4 (0.8) 81.3 (0.4) 90.7 (0.9) 4.3 (0.2)

MADGNet 88.4 (1.0) 79.9 (1.5) 86.4 (1.5) 86.2 (0.9) 95.9 (0.5) 2.6 (0.4)

Table 14. Segmentation results on Breast Tumor Segmentation
(Ultrasound) [3, 74]. We train each model on BUSI [3] train
dataset and evaluate on BUSI [3] and STU [74] test datasets.

Method DSB2018 [6] ⇒ DSB2018 [6]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 91.1 (0.2) 84.3 (0.3) 92.1 (0.1) 83.3 (0.0) 96.8 (0.0) 2.5 (0.0)

AttUNet [44] 91.6 (0.1) 85.0 (0.1) 92.5 (0.0) 83.7 (0.0) 97.2 (0.0) 2.4 (0.0)

UNet++ [73] 91.6 (0.1) 85.0 (0.1) 92.8 (0.1) 83.6 (0.0) 97.1 (0.0) 2.4 (0.0)

CENet [22] 91.3 (0.1) 84.6 (0.1) 92.5 (0.1) 83.6 (0.1) 97.2 (0.1) 2.3 (0.0)

TransUNet [7] 91.8 (0.3) 85.2 (0.2) 92.8 (0.1) 83.8 (0.2) 97.3 (0.2) 2.3 (0.1)

FRCUNet [4] 90.8 (0.3) 83.8 (0.4) 92.1 (0.2) 83.2 (0.2) 97.0 (0.2) 2.5 (0.1)

MSRFNet [56] 91.9 (0.1) 85.3 (0.1) 92.7 (0.1) 83.7 (0.1) 97.5 (0.0) 2.3 (0.0)

HiFormer [26] 90.7 (0.2) 83.8 (0.4) 91.1 (1.1) 82.5 (0.8) 96.0 (1.1) 2.7 (0.4)

DCSAUNet [66] 91.1 (0.2) 84.4 (0.2) 91.8 (0.2) 82.9 (0.3) 96.6 (0.2) 2.8 (0.2)

M2SNet [72] 91.6 (0.2) 85.1 (0.3) 92.0 (0.2) 83.5 (0.1) 97.5 (0.1) 2.2 (0.1)

MADGNet 92.0 (0.0) 85.5 (0.1) 92.3 (0.4) 83.8 (0.2) 97.4 (0.3) 2.3 (0.1)

Method DSB2018 [6] ⇒ MonuSeg2018 [12]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 29.2 (5.1) 18.9 (3.5) 28.0 (5.2) 38.3 (1.8) 49.9 (6.0) 32.5 (2.6)

AttUNet [44] 39.0 (3.1) 26.5 (2.4) 40.9 (2.2) 39.3 (2.9) 61.4 (5.0) 24.5 (4.6)

UNet++ [73] 25.4 (0.8) 15.3 (0.5) 21.1 (0.4) 5.5 (1.7) 21.1 (3.1) 66.6 (4.5)

CENet [22] 27.7 (1.5) 16.9 (1.0) 26.7 (1.1) 37.7 (1.9) 59.6 (4.9) 27.5 (5.1)

TransUNet [7] 15.9 (8.5) 9.6 (5.5) 17.0 (6.2) 32.6 (4.1) 39.0 (5.5) 23.4 (7.6)

FRCUNet [4] 26.1 (5.6) 16.8 (4.3) 26.9 (7.7) 40.6 (6.7) 49.3 (9.7) 22.9 (10.5)

MSRFNet [56] 9.1 (1.0) 5.3 (0.7) 12.0 (0.9) 35.6 (1.6) 46.4 (0.4) 18.7 (0.4)

HiFormer [26] 21.9 (8.9) 13.2 (5.7) 22.5 (6.7) 39.9 (1.4) 48.2 (0.3) 23.9 (9.1)

DCSAUNet [66] 4.3 (0.3) 2.4 (0.9) 5.2 (3.2) 18.0 (7.3) 37.0 (1.2) 25.9 (5.9)

M2SNet [72] 36.3 (0.9) 23.1 (0.8) 29.1 (1.6) 20.4 (1.5) 34.5 (6.8) 45.1 (5.3)

MADGNet 46.7 (4.3) 32.0 (2.9) 43.0 (4.6) 40.8 (2.6) 60.7 (6.3) 29.2 (5.3)

Table 15. Segmentation results on Cell Segmentation (Mi-
croscopy) [6, 12]. We train each model on DSB2018 [6] train
dataset and evaluate on DSB2018 [6] and MonuSeg2018 [12] test
datasets.

Method CVC-ClinicDB [5] + Kvasir-SEG [30] → CVC-ClinicDB [5]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 76.5 (0.8) 69.1 (0.9) 75.1 (0.8) 83.0 (0.4) 86.4 (0.6) 2.7 (0.0)

AttUNet [44] 80.1 (0.6) 74.2 (0.5) 79.8 (0.7) 85.1 (0.4) 88.5 (0.5) 2.1 (0.1)

UNet++ [73] 79.7 (0.2) 73.6 (0.4) 79.4 (0.1) 85.1 (0.2) 88.3 (0.5) 2.2 (0.0)

CENet [22] 89.3 (0.3) 84.0 (0.2) 89.1 (0.2) 89.8 (0.2) 96.0 (0.6) 1.1 (0.0)

TransUNet [7] 87.4 (0.2) 82.9 (0.1) 87.2 (0.1) 88.5 (0.2) 95.2 (0.1) 1.3 (0.0)

FRCUNet [4] 91.8 (0.2) 87.0 (0.2) 91.3 (0.3) 91.1 (0.1) 97.1 (0.3) 0.7 (0.0)

MSRFNet [56] 83.2 (0.9) 76.5 (1.1) 81.9 (1.2) 86.4 (0.5) 91.3 (1.0) 1.7 (0.0)

HiFormer [26] 89.1 (0.6) 83.7 (0.6) 88.8 (0.5) 89.5 (0.2) 96.1 (0.8) 1.1 (0.2)

DCSAUNet [66] 80.5 (1.2) 73.7 (1.1) 79.6 (1.1) 84.9 (0.6) 89.9 (1.0) 2.4 (0.2)

M2SNet [72] 92.8 (0.8) 88.2 (0.8) 92.3 (0.7) 91.4 (0.4) 97.7 (0.5) 0.7 (0.1)

MADGNet 93.9 (0.6) 89.5 (0.5) 93.6 (0.6) 92.2 (0.2) 98.5 (0.7) 0.7 (0.0)

Method CVC-ClinicDB [5] + Kvasir-SEG [30] → Kvasir-SEG [30]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 80.5 (0.3) 72.6 (0.4) 78.2 (0.4) 79.9 (0.2) 88.2 (0.2) 5.2 (0.2)

AttUNet [44] 83.9 (0.1) 77.1 (0.1) 83.1 (0.0) 81.9 (0.0) 90.0 (0.1) 4.4 (0.1)

UNet++ [73] 84.3 (0.3) 77.4 (0.2) 83.1 (0.3) 82.1 (0.1) 90.5 (0.2) 4.6 (0.1)

CENet [22] 89.5 (0.7) 83.9 (0.7) 88.9 (0.7) 85.3 (0.3) 94.1 (0.4) 3.0 (0.2)

TransUNet [7] 86.4 (0.4) 81.3 (0.4) 85.4 (0.4) 83.0 (0.4) 92.1 (0.5) 4.0 (0.3)

FRCUNet [4] 88.8 (0.4) 83.5 (0.6) 88.4 (0.6) 85.1 (0.2) 93.6 (0.4) 3.3 (0.1)

MSRFNet [56] 86.1 (0.5) 79.3 (0.4) 84.9 (0.7) 82.8 (0.1) 92.0 (0.4) 4.0 (0.1)

HiFormer [26] 88.1 (1.0) 82.3 (1.2) 87.3 (1.1) 84.6 (0.5) 93.9 (0.6) 3.1 (0.3)

DCSAUNet [66] 82.6 (0.5) 75.2 (0.5) 80.7 (0.3) 81.3 (0.7) 90.1 (0.1) 4.9 (0.2)

M2SNet [72] 90.2 (0.5) 85.1 (0.6) 89.4 (0.8) 85.6 (0.5) 94.6 (0.7) 2.8 (0.1)

MADGNet 90.7 (0.8) 85.3 (0.8) 89.9 (0.8) 85.6 (0.5) 94.7 (1.0) 3.1 (0.2)

Method CVC-ClinicDB [5] + Kvasir-SEG [30] → CVC-300 [61]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 66.1 (2.3) 58.5 (2.1) 65.0 (2.2) 79.7 (1.0) 80.0 (2.4) 1.7 (0.1)

AttUNet [44] 63.0 (0.3) 57.2 (0.4) 62.4 (0.4) 79.1 (0.3) 76.6 (0.9) 1.8 (0.0)

UNet++ [73] 64.3 (2.2) 58.4 (2.0) 63.7 (2.3) 79.5 (1.1) 77.4 (1.5) 1.8 (0.1)

CENet [22] 85.4 (1.6) 78.2 (1.4) 84.2 (1.8) 90.2 (0.5) 94.0 (1.5) 0.8 (0.1)

TransUNet [7] 85.0 (0.6) 77.3 (0.3) 83.1 (0.7) 89.4 (0.3) 95.2 (0.7) 1.1 (0.1)

FRCUNet [4] 86.7 (0.7) 79.4 (0.3) 85.1 (0.2) 90.5 (0.3) 95.0 (0.2) 0.8 (0.1)

MSRFNet [56] 72.3 (2.2) 65.4 (2.2) 71.2 (2.0) 83.5 (1.6) 84.6 (1.7) 1.4 (0.1)

HiFormer [26] 84.7 (1.1) 77.5 (1.1) 83.2 (0.7) 89.7 (0.6) 94.0 (1.3) 0.8 (0.3)

DCSAUNet [66] 68.9 (4.0) 59.8 (3.9) 66.3 (3.8) 81.1 (2.1) 83.8 (2.9) 2.0 (0.3)

M2SNet [72] 89.9 (0.2) 83.2 (0.3) 88.3 (0.2) 93.0 (0.2) 96.9 (0.2) 0.6 (0.0)

MADGNet 87.4 (0.4) 79.9 (0.4) 84.5 (0.5) 92.0 (0.2) 94.7 (0.5) 0.9 (0.1)

Method CVC-ClinicDB [5] + Kvasir-SEG [30] → CVC-ColonDB [57]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 56.8 (1.3) 49.0 (1.2) 55.9 (1.2) 72.6 (0.6) 73.9 (1.6) 5.1 (0.1)

AttUNet [44] 56.8 (1.6) 50.0 (1.5) 56.2 (1.7) 73.0 (0.7) 72.3 (1.3) 4.9 (0.1)

UNet++ [73] 57.5 (0.4) 50.2 (0.4) 56.6 (0.3) 73.3 (0.3) 73.9 (0.5) 5.0 (0.1)

CENet [22] 65.9 (1.6) 59.2 (0.1) 65.8 (0.1) 77.7 (0.1) 79.5 (0.4) 4.0 (0.2)

TransUNet [7] 63.7 (0.1) 58.4 (0.4) 62.8 (0.9) 75.8 (0.4) 79.3 (1.6) 4.8 (0.0)

FRCUNet [4] 69.1 (1.0) 62.6 (0.9) 68.5 (1.0) 79.3 (0.6) 81.4 (0.6) 4.0 (0.1)

MSRFNet [56] 61.5 (1.0) 54.8 (0.8) 60.8 (0.8) 75.4 (0.5) 76.1 (0.9) 4.5 (0.1)

HiFormer [26] 67.6 (1.4) 60.5 (1.3) 66.9 (1.4) 78.6 (0.7) 81.2 (1.4) 4.2 (0.0)

DCSAUNet [66] 57.8 (0.4) 49.3 (0.4) 54.9 (0.6) 73.3 (0.3) 76.0 (1.3) 5.8 (0.3)

M2SNet [72] 75.8 (0.7) 68.5 (0.5) 73.7 (0.7) 84.2 (0.3) 86.9 (0.1) 3.8 (0.1)

MADGNet 77.5 (1.1) 69.7 (1.2) 76.2 (1.2) 83.3 (0.8) 88.0 (1.0) 3.2 (0.2)

Method CVC-ClinicDB [5] + Kvasir-SEG [30] → ETIS [54]
DSC ↑ mIoU ↑ Fw

β ↑ Sα ↑ Emax
ϕ ↑ MAE ↓

UNet [51] 41.6 (1.1) 35.4 (1.0) 39.5 (1.0) 67.2 (0.6) 61.7 (0.2) 2.7 (0.2)

AttUNet [44] 38.4 (0.3) 33.5 (0.1) 37.6 (0.4) 65.4 (0.2) 59.7 (1.2) 2.6 (0.1)

UNet++ [73] 39.1 (2.4) 34.0 (2.1) 38.3 (2.4) 65.8 (1.0) 59.3 (1.9) 2.7 (0.1)

CENet [22] 57.0 (3.4) 51.4 (0.5) 56.0 (0.4) 74.9 (0.1) 73.7 (0.4) 2.2 (0.2)

TransUNet [7] 50.1 (0.5) 44.0 (2.3) 48.8 (1.8) 70.7 (1.3) 68.7 (2.0) 2.6 (0.1)

FRCUNet [4] 65.1 (1.0) 58.4 (0.5) 62.9 (0.6) 78.7 (0.4) 81.0 (1.3) 2.2 (0.3)

MSRFNet [56] 38.3 (0.6) 33.7 (0.7) 36.9 (0.6) 66.0 (0.2) 58.4 (0.9) 3.6 (0.5)

HiFormer [26] 56.7 (3.2) 50.1 (3.3) 55.2 (3.0) 74.1 (1.7) 74.7 (2.5) 1.8 (0.1)

DCSAUNet [66] 42.9 (3.0) 36.1 (2.9) 40.5 (3.5) 67.9 (1.4) 69.3 (2.0) 4.1 (0.9)

M2SNet [72] 74.9 (1.3) 67.8 (1.4) 71.2 (1.6) 84.6 (0.1) 87.2 (0.7) 1.7 (0.3)

MADGNet 77.0 (0.3) 69.7 (0.5) 75.3 (0.2) 84.6 (0.5) 88.4 (0.6) 1.6 (0.4)

Table 16. Segmentation results on Polyp Segmentation
(Colonoscopy) [5, 30, 54, 57, 61]. We train each model on
CVC-ClinicDB [5] + Kvasir-SEG [30] train dataset and evaluate
on CVC-ClinicDB [5], Kvasir-SEG [30], CVC-300 [61], CVC-
ColonDB [57], and ETIS [54] test datasets.
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