
HumMUSS: Human Motion Understanding using State Space Models

Supplementary Material

Arnab Mondal
Mila & Apple

arnab.mondal@mila.quebec

Stefano Alletto
Apple

salletto@apple.com

Denis Tome
Apple

d tome@apple.com

1. Implementation Details

Our pretraining approach builds on top of open-sourced
implementation of MotionBERT [4] 1 . We implement
our model using PyTorch and adapt the data-preprocessing
pipeline from MotionBERT for both pretraining and fine-
tuning phases. Detailed information about this pipeline can
be found in [4]. The experiments were conducted on a
linux machine equipped with 4 NVIDIA A100 80GB GPUs.
However, for finetuning experiments, a single A100 80GB
GPU proved to be sufficient.

HumMUSS is designed with 5 spatiotemporal blocks,
that is N = 5. Given that we work with 2D joints and their
confidences, the input dimensionality is set to Din = 3. Our
implementation utilizes a 16M parameter model for Hum-
MUSS, with a model dimension (Dm) of 256.

In our approach, the hyperparameters for GDSSM
Blocks are adjusted to make both the causal and unidirec-
tional model consist of 16M parameters. Specifically, we
use k = 1 for the spatial GDSSM block and k = 2 for the
temporal GDSSM block. For the causal HumMUSS model,
we set m = 3 for both the spatial and temporal blocks,
while for the bidirectional model, m = 2.5 is used. Fur-
thermore, the dimension of the state space (N ) is set to 128
for both variants of HumMUSS, and the representation di-
mension (Drep) is 512.

Apart from the learning rate, the other training hyperpa-
rameters for both the pretraining and finetuning tasks are
kept consistent with those used in the MotionBERT model
[4], ensuring a fair comparison with the transformer-based
baseline. We use a learning rate of 0.0003 for the pretrain-
ing. We use similar learning rates as [4] for finetuning tasks.

2. Additional experiments

In this section, we delve deeper with additional experi-
ments to explore the impact of architectural choices on
HumMUSS. These investigations are specifically conducted

1https://github.com/Walter0807/MotionBERT

within the domain of 3D Pose Estimation, utilizing the MPI-
INF-3DHP dataset [3]. This task choice aligns well with our
primary goal of pretraining objective to learn motion repre-
sentations.

2.1. Generalization to longer context window

We show the ability of HumMUSS’s architecture to gener-
alize to longer sequence lengths in this experiment. The
model, initially trained on a sequence length of F=27
frames, was tested on longer sequences of F=81, and F=243.
As shown in Table 2, the HumMUSS model exhibits a con-
sistency in performance when tested on longer sequences.
This means HumMUSS can generalize to longer sequences
than the one it is trained while being able to encode the
longer context. This proves especially beneficial for deploy-
ment in tasks necessitating a longer contextual understand-
ing than what was used during the model’s training.

Training sequence length Test sequence length
F=27 F=27 F=81 F=243

HumMUSS 25.1 25.8 26.2

Table 1. 3D Pose Estimation performance (MPJPE in mm) of a
HumMUSS model trained on 27 frame and tested on longer se-
quences.

2.2. Ablation study

An ablation study was conducted to evaluate the impact
of different aggregation methods in the GDSSM (General-
ized Dynamic Spatiotemporal Sequence Modeling) blocks
of the HumMUSS model. In particular, we consider ag-
gregation of the different information processing pathways
in GDSSM blocks. In Section 4.1 and 4.2, we use Multi-
plicative gating to combine xf , xb and xid. In this abla-
tion, we also test other aggregation methods including av-
erage pooling and pooling with learnable weights. Notably,
the pooling with learnable weights technique is the same as
the one presented in Section 4.3 the results, as illustrated in

1



Figure 1. Example frames of 3d reconstruction for both HumMUSS and MotionBERT [4] when the input signal is sub-sampled by a factor
of 8. Green and red poses represent ground truth and prediction respectively. Best viewed in color.

Table 3, show that Multiplicative Gating outperforms other
methods in both causal and bidirectional model types, with
the lowest MPJPE of 40.2 mm in the bidirectional setting
and 45.1mm in the causal setting. This indicates the effec-
tiveness of Multiplicative Gating in aggregating information
within GDSSM blocks.

Type of aggregation Model type
in GDSSM Blocks Causal Bidirection

Average Pool 25.8 20.5
Pooling with learnable weights 25.3 20.1

Multiplicative Gating 24.6 18.7

Table 2. 3D Pose Estimation performance (MPJPE in mm) of
HumMUSS using different aggregation methods to combine in-
formation in the GDSSM blocks.

Further, the performance of HumMUSS using differ-
ent aggregation methods to combine two streams of Spa-
tiotemporal GDSSMs was evaluated. The methods included
Multiplicative Gating, Average Pooling, and Pooling with
Learnable Weights. The findings, presented in Table 4, indi-
cate that Pooling with Learnable Weights provides the best
performance in both causal and bidirectional settings. This
highlights the effectiveness of learnable weights in combin-
ing multiple streams of spatiotemporal data. Surprisingly,
multiplicative gating performs poorly for combining two

streams which warrants further investigation in the future.

Type of aggregation Model type
to combine two streams Causal Bidirection
Multiplicative Gating 26.6 21.1

Average Pool 25.1 19.5
Pooling with learnable weights 24.6 18.7

Table 3. 3D Pose Estimation performance (MPJPE in mm) of
HumMUSS using different aggregation methods to combine the
two streams of Spatiotemporal GDSSMs.

3. Initialization of DSSM parameters

A simple way to initialize the diagonal parameters is to
use the linear initialization which sets the real part Λre to
− 1

21N and the imaginary part Λim to (πj)Nj=1 [2]. Gu et
al. [2] provides many other initialization techniques and
empirically verify that they can approximate the initial-
ization of the S4 [1] kernel which leads to stable training
regime for longer sequences. In practice, we found all the
techniques leads to similar performance and use the simple
linear initialization scheme throughout our experiments. Fi-
nally, elements of C are samples from a normal distribution
and ∆ is initialized randomly between 0.001 and 0.1.



4. Generalization to unseen frame rate
Transformers, being discrete models, are inherently de-
signed for sequences that have fixed uniform spacing in
time and utilize positional encodings to encode temporal
information. MotionBERT, in particular, exacerbates this
issue by employing learnable positional encodings, which
lack a clear sense of time. In contrast, HumMUSS being a
continuous time model, does not require positional encod-
ings and enables training and testing on data with differ-
ent frame rates. Unlike Transformers, which struggle with
down-sampled or up-sampled videos, HumMUSS seam-
lessly adapts. For instance, if trained on 30 FPS data, chang-
ing the discretization parameter ∆ to 2∆ or 1

2∆ allows the
model to perform effectively on 15 or 60 FPS videos respec-
tively, without the need for expensive re-training.

In practice, sampling rate changes can directly be mea-
sured by e.g. reading camera timestamps to detect frame
drops or frame-rate changes due to external factors. As
a continuous time model, HumMUSS interprets sequences
as signal values at different timestamps. Adjustment the
discretization parameter allows HumMUSS to process it as
changes in the number of samples, rather than a different
input signal. Furthermore, in sequential inference scenar-
ios with varying sampling rate, we keep HumMUSS robust
by dynamically scaling ∆ based on the evolving sampling
rate. This is possible because HumMUSS maintains a com-
pressed memory of the past observed signal in its state that
is independent of past sampling frequencies. Such adapt-
ability positions HumMUSS as a potent model for real-time
applications where input frame rates may vary due to factors
like thermal throttling of capturing devices.

References
[1] Albert Gu, Karan Goel, and Christopher Ré. Efficiently mod-

eling long sequences with structured state spaces. arXiv
preprint arXiv:2111.00396, 2021. 2

[2] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On
the parameterization and initialization of diagonal state space
models. Advances in Neural Information Processing Systems,
35:35971–35983, 2022. 2

[3] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal Fua, Olek-
sandr Sotnychenko, Weipeng Xu, and Christian Theobalt.
Monocular 3d human pose estimation in the wild using im-
proved cnn supervision. In 2017 international conference on
3D vision (3DV), pages 506–516. IEEE, 2017. 1

[4] Wentao Zhu, Xiaoxuan Ma, Zhaoyang Liu, Libin Liu, Wayne
Wu, and Yizhou Wang. Motionbert: A unified perspective
on learning human motion representations. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 15085–15099, 2023. 1, 2


