
Authentic Hand Avatar from a Phone Scan via Universal Hand Model

Supplementary Material

In this supplementary material, we provide more exper-
iments, discussions, and other details that could not be in-
cluded in the main text due to the lack of pages. The con-
tents are summarized below:

• Sec. A: More qualitative results
• Sec. B: More ablation studies
• Sec. C: UHM architectures and loss functions
• Sec. D: Details of adaptation to a phone scan
• Sec. E: Our datasets
• Sec. F: Experiment details
• Sec. G: Failure cases

A. More qualitative results
A.1. ID code interpolation

Fig. A, B, and C show that our UHM produces smoothly
changing 3D meshes from the linearly interpolated ID
codes, where the two ID codes are from the unseen test set.
Our 3D meshes from the interpolated ID codes have a nat-
ural and realistic surface. On the other hand, Fig. B and C
show that Handy [22] fails to disentangle 3D pose and ID.
As each row of all figures is from the same pose but from
different ID codes, only ID-related information (i.e., thick-
ness) should change while preserving the 3D pose. How-
ever, Fig. B and C show that only changing the ID code of
Handy produces 3D meshes with different 3D poses. This
is evident in Fig. C as the rightmost result of Handy has a
totally different 3D pose from the leftmost one.

A.2. ID code random sampling

Fig. D shows 3D meshes from our UHM with randomly
sampled ID codes from the Gaussian distribution and zero
3D poses. Our ID space spans a wide range of ID space,
including diverse bone lengths and 3D hand shapes.

A.3. Effectiveness of the image matching loss

Fig. E shows that using our image matching loss of Sec. 4
of the main manuscript produces consistent unwrapped tex-
tures compared to the reference texture. (a) has consistent
fingernail tips (yellow circles), while (c) produces inconsis-
tent ones compared to those of the (b) reference texture.

A.4. Low-resolution UHM

Fig. F demonstrate that even with a half number of vertices
(3K), ours achieves better fidelity than NIMBLE (6K) and
Handy (7K). For example, the low-resolution UHM has nat-
ural muscle bulging around the thumb and wrinkles around
the pinky finger.

A.5. 3D hand avatars

Fig. G shows that our 3D hand avatar achieves sharper tex-
tures than HARP [9]. Handy [22] fails to produce authen-
tic results, consistent with Fig. 10 and 11 of the main
manuscript. Fig. H additionally shows our adapted 3D hand
avatar, rendered with Phong reflection model and environ-
ment maps, as in Fig. 1 (b) of the main manuscript. To
this end, given an environment map, we first do preconvo-
lution to map the illumination in the environment map to
diffuse and specular lighting representation similar to [20].
Then, the final texture is obtained by combining the diffuse
and specular representation with our adapted texture (opti-
mized texture of Sec. 5.4 of the main manuscript) according
to the normal map from 3D mesh and view direction. The
3D poses of (b) are from the tracked results from a differ-
ent subject of our studio data, which shows that our hand
avatars can be driven with novel poses. The results are not
photorealistic due to the limitation of the Phong reflection
model, but they show the potential of our hand avatar, which
can be combined with future relightable hand models [1].

B. More ablation studies
B.1. Effectiveness of the texture optimization

Fig. I shows that our texture optimization, described in
Sec. 5.4 of the main manuscript, further enhances the pho-
torealism of the texture.

B.2. Effectiveness of the TV regularizer during the
adaptation

Fig. J shows the effectiveness of the total variation (TV)
regularizer to our ShadowNet. Without the TV regularizer,
ShadowNet tried to consider all darkness differences be-
tween 1) albedo+shadow and 2) captured images as shad-
ows. As a result, local sharp textures, including wrinkles are
considered shadows. As described in Sec. 5.3 of the main
manuscript, by applying the TV regularizer to the Shad-
owNet, we can prevent such undesired shadows.

B.3. Extension of DHM to the universal case vs.
UHM.

Fig. K shows that when performing the tracking and mod-
eling at the same time, special considerations are necessary
for universal hand modeling. We choose DHM [15], a high-
fidelity personalized 3D hand model, as a comparison target
because it has a similar training pipeline that performs the
tracking and modeling at the same time as ours. One crit-
ical difference between DHM and our UHM is that DHM
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Figure A. Comparison of 3D meshes from linearly interpolated ID codes. The leftmost and rightmost 3D scans show examples of the ID
codes 1 and 2. For each row, 3D meshes have the same 3D pose and only ID code changes by a linear interpolation.
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Figure B. Comparison of 3D meshes from linearly interpolated ID codes. The leftmost and rightmost 3D scans show examples of the ID
codes 1 and 2. For each row, 3D meshes have the same 3D pose and only ID code changes by a linear interpolation.
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Figure C. Comparison of 3D meshes from linearly interpolated ID codes. The leftmost and rightmost 3D scans show examples of the ID
codes 1 and 2. For each row, 3D meshes have the zero pose (i.e., 3D pose of the template space), and only ID code changes by a linear
interpolation.

is a personalized 3D hand model, which does not learn the
ID space and cannot generalize to novel IDs. For systems
that perform the tracking and modeling at the same time,
one major difficulty of universal hand modeling is disen-
tangling ID and pose information as all supervision targets,
such as 3D joint coordinates, 3D scans, masks, and images,
are entangled representations of ID and pose. We effec-
tively achieve the disentanglement by calculating loss func-
tions using two types of 3D meshes: one from both cor-
rectives and the other only from the ID-dependent correc-
tives, as described in Sec. 4 of the main manuscript. During
the training, the ID-dependent correctives of all frames that
belong to the same ID are from the same inputs (i.e., 3D
joint coordinates and depth maps of the neutral pose, as de-
scribed in IDEncoder and IDDecoder. of Sec. 3.2 of the
main manuscript). Therefore, supervising 3D meshes that
are only from the ID-dependent correctives can make IDDe-
coder formulate meaningful ID space (Fig. K (b)) without
being affected by the pose-and-ID-dependent correctives,
which naturally achieves the disentanglement of the ID and
pose. On the other hand, without the supervision of the 3D
meshes that are only from the ID-dependent correctives like
DHM, the model cannot disentangle ID and pose, which
results in meaningless ID space (Fig. K (a)). Such disentan-
glement is especially challenging for systems that perform
the tracking and modeling at the same time because pre-
vious separate pipeline [12, 22, 23] can perform tracking

for each ID, which can naturally provide assets that only
have ID information without pose by canceling pose from
the tracked meshes.

C. UHM network architectures and regulariz-
ers

C.1. Network architectures

We describe detailed network architectures of UHM, briefly
described in Sec. 3.2 of the main manuscript.
IDEncoder. IDEncoder outputs ID code zid ∈ R32 from a
pair of a depth map and 3D joint coordinates of each train-
ing subject. To prepare the inputs of the IDEncoder, we
first select a single pair of a 3D scan and 3D joint coordi-
nates for each subject. Hence, there are subjects number of
(3D scan and 3D joint) pairs. As the IDEncoder should cap-
ture only ID-related information, the poses of the inputs of
the IDEncoder should be normalized. To this end, we take
the pairs from the first frame of the captures as the poses
at the first frames are close to zero poses, which we call
neutral poses. Then, we rigidly align the selected 3D scans
and 3D joint coordinates to a reference coordinate system
and render depth maps from the aligned 3D scans from the
front and back views. In this way, we can further normalize
views, which exist and are hard to be normalized in images.

ResNet-18 [7] takes two-view depth maps of neutral
pose for each subject. Please note that IDEncoder always



Figure D. 3D meshes from randomly sampled ID codes from the Gaussian distribution with zero 3D poses.

takes the same inputs for the same subject during the train-
ing. Hence, the size of the mini-batch is 2Ns, where Ns is
the number of unique subjects in the mini-batch of PoseEn-
coder. The ResNet-18 is initialized with ImageNet [24]
classification, and we discard fully connected layers. The
output of ResNet-18 is a 512-dimensional feature vector.
We reshape the feature vector to a 1024-dimensional one,
which represents a multi-view feature for each subject. The
multi-view feature is concatenated with the 3D joint coor-
dinate of a neutral pose and passed to two fully connected
layers, which produce the id code zid using the reparame-
terization trick [10]. The two fully connected layers consist
of 512 hidden units and an intermediate ReLU activation
function.

IDDecoder. IDDecoder takes the ID code zid and outputs
ID-dependent skeleton correctives ∆J̄ id and ID-dependent
vertex correctives ∆V̄ id. The IDDecoder consists of two

fully connected layers with a ReLU activation function for
the non-linearity. The hidden size of the fully connected
layers is set to 512. ∆J̄ id should not replicate any changes,
which can be replicated by 3D joint rotations. In other
words, 3D hands should be in the “zero pose” after applying
∆J̄ id to the template mesh. Hence, except for child joints
of the wrist, we enable only 1 degree of freedom (DoF) of
∆J̄ id to restrict it to only affect the lengths of fingers. In
this way, the learned ID space is not mixed with the pose.

PoseEncoder. PoseEncoder outputs 6D rotation [29] of
joints Θ from a pair of a single RGB image and 3D joint
coordinates of arbitrary poses and identities. The 3D global
rotation and translation are obtained by rigidly aligning
wrist and four finger root joints (except the thumb root joint)
to the target 3D joint coordinates. Unlike IDEncoder’s in-
puts consist of a single pair of each subject, PoseEncoder’s
inputs are from any poses and subjects. Our PoseEncoder
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Figure E. Comparison of 3D hand avatars on HARP dataset [9].
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Figure F. Comparison of the low-resolution UHM and previous
3D hand models [12, 22, 23] on our test set.

has a similar network architecture as Pose2Pose [17]. The
ResNet-50 of Pose2Pose is initialized with ImageNet [24]
classification, and the remaining parts are randomly initial-
ized.

PoseDecoder. PoseDecoder outputs pose-and-ID-
dependent vertex corrective ∆V̄ pose in a sparse way using
local joint clusters for better generalization to unseen poses
following STAR [19]. To this end, we make J number
of local joint clusters, where each cluster consists of 6D
rotations of a joint, its parent joint, and a child joint. J
denotes the number of joints. We additionally concatenate
the ID code for each cluster. Hence, each local joint cluster
has the dimension of R18+32, where 18 and 32 represent
three 6D rotations and the dimension of the ID code,
respectively. Please note that we pass 6D rotations after
masking invalid DoFs and root rotation to zero. Then, the
local joint clusters are passed to two separable convolutions
with an intermediate ReLU activation function for a non-
linearity. The hidden size of the separable convolution is
set to 256. The output of the separable convolutions of each
local joint cluster has the dimension of RV×3. V denotes
the number of vertices of our template mesh. Formally, we

denote the above process by Fj = f(θj , θp(j), θc(j), z
id),

where Fj denotes the output of the separable convolution
of jth local joint cluster. p(j) and c(j) denote parent
child joint of jth joint, respectively. The final pose-and-
ID-dependent vertex corrective ∆V̄ pose is obtained by
∆V̄ pose =

∑
j Φj(f(θj , θp(j), θc(j), z

id) − f(0,0,0, zid)).
Φ ∈ RV×J is a mask, which introduces sparsity. It is
initialized with a geodesic distance between the vth vertex
and jth joint in the template mesh. We subtract the output
of the separable convolution from the zero pose to prevent
pose-and-ID-dependent vertex corrective ∆V̄ pose from
replicating only ID-dependent geometry, which should be
replicated by ID-dependent vertex corrective ∆V̄ id.

C.2. Loss functions for the tracking and modeling

Our UHM is trained in an end-to-end manner by minimizing
L, defined as below:

L =Lpose + 10Lp2p + 0.1Lmask + 0.1Limg

+ 0.01LΘ + 0.001Lzid + 1000L∆V̄ id + 10L∆V̄ pose

+ 75000Llap + 0.001LΦ + 0.1Lvol + 0.1Lcut,
(1)

where Lpose, Lp2p, Lmask, and Limg are described in the
Sec. 4 of the main manuscript. The remaining loss func-
tions are regularizers, described below.

First, we minimize LΘ, a squared L2 norm of Θ af-
ter converting it to an axis-angle representation, to pre-
vent extreme rotations. Second, we minimize Lzid , a KL
divergence between zid and the normal Gaussian distribu-
tion. In this way, we can make the ID latent space follow
the Gaussian distribution, necessary for sampling novel ID
from a known (e.g., Gaussian) distribution. Third, we mini-
mize L∆V̄ id and L∆V̄ pose , a squared L2 norm of the tangen-
tial component of ∆V̄ id and ∆V̄ pose, respectively. They



(b) UHM (Ours) (c) HARP (d) Handy(a) Phone scan
Figure G. Comparison of 3D hand avatars on HARP dataset [9].

(a) Phone scan (b) Our adapted hand avatars

Figure H. Our adapted 3D hand avatar with the Phong reflection
model and environment maps [4, 8].

prevent the vertex correctives from overwhelming the ID-
dependent skeleton corrective ∆J̄ id. To be more specific,
we encourage the finger lengths to be adjusted mainly by
∆J̄ id, not by the vertex correctives. Fourth, we minimize
Llap, the Laplacian regularizer for smooth surface. Like
Lp2p and Lmask, we compute two types of this regularizer
from 1) both correctives and 2) only ID-dependent correc-
tive to learn meaningful ID space. Fifth, we minimize LΦ,
a L1 norm of ReLU(Φ), following STAR [19]. In this way,
we can encourage sparsity of the ∆V̄ pose, beneficial for the
generalizability to unseen 3D poses. Sixth, we minimize

(a) Without texture 
optimization

(b) With texture 
optimization (Ours) (c) Phone scan

Figure I. The effectiveness of the texture optimization during our
phone adaptation.

Lvol, a volume-preserving regularizer. It first pre-calculates
the radius of spheres for each finger in the zero pose space
only with ∆V̄ id without ∆V̄ pose. Then, Lvol is the differ-
ence between 1) the distance from vertices to sphere radius
and 2) the radius of the sphere if the distance shorter than
the radius. It encourages our UHM to preserve the mini-
mal volume of each finger, where the minimal values are
calculated in the zero pose space with ∆V̄ id. Finally, we
minimize Lcut for a flat cut around the forearm. To this end,
we make a virtual vertex at the center of the cut and make
virtual triangles using the virtual vertex and pairs of two
connected vertices at the cut. Lcut is a L1 distance between
dot products of all those virtual triangles. In this way, we
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Figure J. The effectiveness of the total variation (TV) regularizer
to the ShadowNet.
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Figure K. Comparison of the standard deviation of ID-dependent
vertex corrective ∆V̄ id. The correctives for the standard deviation
computation are obtained by 1) randomly sampling 512 ID code
zid from the normal Gaussian and 2) passing them to pre-trained
IDDecoder.

can encourage all vertices at the cut to be on the same plane,
which results in a flat cut.

D. Details of adaptation to a phone scan
We provide detailed descriptions of our adaptation stage,
described in Sec. 5 of the main manuscript.

D.1. Geometry fitting

For the geometry fitting, we designed PoseNet, which has a
similar network architecture to Pose2Pose [17] with minor
modifications. The PoseNet outputs 3D global rotation, 3D
pose Θ, pose code, and 3D global translation of UHM from
an image, a depth map, a mask, and 2D joint coordinates,
where the inputs are obtained from Sec. 5.1 of the main
manuscript. The pose code is a latent vector of a pre-trained
VAE, which embeds plausible hand pose space similar to
V-Poser [21]. The VAE is pre-trained on our capture studio
dataset and fixed during the adaptation stage.

We randomly initialize PoseNet before the training. The
PoseNet is used for the pose tracking, a similar spirit of
neural annotators [18]. In addition to the outputs of the net-
work, we optimize ID code zid, shared across all frames as
all frames are from the same person. With the outputs of
the network and the ID code, we obtain 3D mesh using pre-
trained decoders of UHM, used to unwrap images to the UV
space.

The PoseNet is trained in a self-supervised way by being
trained with the inputs of the network (i.e., 2D joint coor-
dinates, a depth map, and a mask). During the training,
we fixed pre-trained decoders of UHM. For the kinematic-
level personalization (e.g., bone lengths), we minimize L1
distance between projected 2D hand joint coordinates and
the target. Also, for the surface-level personalization (e.g.,
thickness of hand surface), we minimize L1 distance be-
tween the rendered mask and the target. We additionally
minimize the L1 distance between the rendered depth map
and the target to address the depth and scale ambiguity. Fi-
nally, we minimize the L1 distance between 3D joint coor-
dinates from the pose code and MANO parameters, where
the MANO parameters are from an off-the-shelf regres-
sor [14]. In this way, we can address the depth ambiguity of
the 2D keypoints. Then, 3D joint angles and 3D mesh from
the pose code are used to supervise those from the 3D pose
Θ.

D.2. ShadowNet

We first tile 3D global rotation, 3D pose Θ, and ID code
zid to all texels in the UV space. In other words, all texels
have the same concatenated 3D global rotation, 3D pose,
and ID code. Then, we compute the dot product between 1)
the normal vector of each vertex and 2) a vector from the
camera to each vertex, which becomes a viewpoint feature
for each vertex. We warp the per-vertex viewpoint feature
to the UV space and concatenate it with the prepared tiled
texels, which become the input of our ShadowNet. Given a
fixed environment during the phone scan, all inputs of our
ShadowNet can determine casted shadow. To distinguish
each texel with its own semantic meaning, we add a learn-
able positional encoding to each texel and pass it to Shad-
owNet. To enlarge the size of the receptive field effectively,
we start from 32 downsampled UV space compared to that
of our UV textures.

The ShadowNet first converts the input to a 256-
dimensional feature map with a convolutional layer. Then,
for each resolution, we apply one convolutional layer, fol-
lowed by group normalization [27] and SiLU activation
function [3]. We used the nearest neighbor for the upsam-
pling. After three times of upsampling, we apply bilinear
upsampling four times and the sigmoid activation function
to normalize the values of the shadow from 0 to 1.

E. Our datasets
We provide detailed descriptions of our two types of
datasets.

E.1. Studio dataset

Our capture studio has 170 calibrated and synchronized
cameras. All cameras lie on the front, side, and top hemi-
spheres of the hand and are placed at a distance of about



Figure L. Examples of poses of the training set of our studio dataset.

one meter from it. Images are captured with 4096 × 2668
pixels at 30 frames per second. We pre-processed the raw
video data by performing 2D keypoint detection [25] and
3D scan [6]. The keypoint detector is trained on our held-
out human annotation dataset, which includes 900K images
with 3D rotation center coordinates of hand joints, where
our manual annotation tool is similar to that of Moon et
al. [16]. The predicted 2D keypoints of each view were tri-
angulated with RANSAC to robustly obtain the groundtruth
(GT) 3D hand joint coordinates. The combination of 2D
keypoint detector and triangulation, used to obtain GT
3D hand joint coordinates, achieves a 1.71 mm error on
our held-out human-annotated test set, which is quite low.
Fig. L and M show pose examples of the training and test-
ing sets of our studio dataset, respectively.

E.2. Phone scan dataset

Fig. N shows examples of our phone scan dataset. The train-
ing set mainly consists of simple poses, where the 3D global

rotation of the hand mainly changes, and the 3D pose and
3D translation of the hand remain almost static. The testing
set consists of diverse poses, such as a fist and thumb-up.

F. Experiment details

F.1. Fitting for Sec. 6.2

For the comparisons in Fig. 9 and Tab. 1 of the main
manuscript, we used 3D joint coordinates and 3D scans as
target data for the fitting, the most typical setting of the
tracking. For the fitting, we minimized 1) L1 distance be-
tween output and target 3D joint coordinates, 2) the P2S
distance from 3D scans, and 3) L2 regularizers to the pa-
rameters. The L2 regularizer is introduced to prevent ex-
treme meshes. Each loss term is weighted by 1, 10, and
0.001. As each 3D hand model has slightly different 3D
joint locations despite the same semantic meaning, we do
not report 3D joint error following [2, 12, 23]. For the
same reason, we turned off the 3D joint loss during the fit-



Figure M. Examples of poses of the testing set our studio dataset.

(a) Training images (b) Testing images
Figure N. Examples of our phone scan dataset.

ting after enough iterations.

For the comparison in Tab. 2 of the main manuscript, we
followed the evaluation protocol of LISA [2]. Specifically,
we pre-define various numbers of available viewpoints and
fit 3D pose and ID code to 2D joint coordinates of those
viewpoints. Due to the depth ambiguity from 2D supervi-
sions from a few viewpoints, we used the pose prior, used

in our adaptation stage of Sec. D.1, as LISA also used ge-
ometry prior from large-scale data. As their codes are not
publicly available, we brought their numbers from their pa-
per.



3D scan UHM (Ours) HARP Handy
Figure O. Comparison of 3D scan and 3D meshes from various
hand adaptation pipelines.

F.2. Handy fitting for Sec. 6.3

We use the same PoseNet and loss functions of ours, de-
scribed in Sec. D, except for one thing: we used VGG
loss function [11] on the rendered image, while we used
LPIPS [28] on the rendered image for the Handy texture fit-
ting following their paper. The latent code of the Handy’s
texture is shared across all frames and is optimizable.

F.3. P2S calculation of Tab. 3

We calculated the P2S errors of the adapted 3D hand avatar
in Tab. 3 of the main manuscript. To this end, we first se-
lected a frame with the neutral pose of studio capture of
the four subjects, where the four subjects have co-captured
studio and phone scan data. From the studio data, we
have 3D joint coordinates and 3D scan of the neutral pose.
Then, we optimize 3D pose and translation of each adapted
avatars by minimizing L1 3D joint distance and point-to-
point loss function from the studio data, described in Sec. 4
of the main manuscript. During the optimization, we fix ID-
related information, such as ID code zid of ours. The P2S
errors are calculated between the optimized meshes of each
avatar and 3D scan from our studio data. Fig. O visualizes
the optimized mesh and 3D scan. For UHM and HARP, we
excluded the vertices on the forearm when calculating the
3D errors as they are too unconstrained.

F.4. HARP dataset

As the HARP dataset does not provide depth maps, we do
not use the depth map loss function in our pipeline. We
used Mediapipe [26] to obtain 2D hand joint coordinates
and used RVM [13] to obtain foreground masks. All re-
maining things are the same as what is described in Sec. D
for the experiments on the HARP dataset. Ours, HARP, and
Handy are equally fitted to the same sequences and are eval-
uated with the same metrics.

Figure P. Our optimized texture after removing shadow with the
ShadowNet. The highlighted area has an evident artifact.

Figure Q. Our optimized texture after removing shadow with the
ShadowNet. The highlighted area has an evident artifact.

G. Failure cases
Geometry fitting. We found that our geometry fitting
pipeline (Sec. 5.2 of the main manuscript) sometimes suf-
fers from a surface-level misalignment. In the geometry
fitting stage, dense supervisions, such as DensePose [5]
of the 3D human body, are not available. Such a lack
of dense supervision makes our 3D geometry suffer from
surface-level misalignment despite the accurate keypoint-
level alignment. Although the image loss during the texture
optimization (Sec. 5.2 of the main manuscript) provides the
dense supervision, its initial texture is from the geometry
fitting (Sec. 5.2 of the main manuscript), which can suffer
from the surface-level misalignment.
Texture unwrapping. Fig. P shows a failure case happens
in the texture unwrapping. There is an evident vertical arti-
fact along the left part of the figure. The reason for such ar-
tifacts is that during the phone capture, the subject exposes
the left and right parts of the vertical line with very different
poses at different time steps. Hence, pose-dependent skin
color changes and view-dependent shading of those left and
right parts become very different, which results in different
colors and an evident vertical line between the left and right
parts. We tried to smooth such a region; however, it was not



enough as the color difference is too big.
ShadowNet. Fig. Q shows a failure case of our ShadowNet.
Although most of the shadow is removed, the highlighted
area still has a small amount of shadow. The remaining
shadow is especially evident as the skin color of this subject
is bright. We think the reason for the remaining shadow is
the regularizers to the ShadowNet to prevent it from con-
sidering black tattoos as shadows. Also, its capability is
not guaranteed for smooth black tattoos and black fingernail
polish. Due to the ambiguity of the intrinsic decomposition,
it might perform badly in low-light conditions; we think this
limitation applies to all current methods.
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