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Abstract

This supplementary document provides (1) ablation
studies, (2) concrete discussions of revealing points in
the ray cloud, (3) further discussions on experimental re-
sults, and (4) additional experimental results. Code is
available at https://github.com/PHANTOM0122/
Ray-cloud.

1. Ablation study
1.1. Comparing minimal solvers for ray clouds

In order to verify the effectiveness of the proposed mini-
mal solver (p5+1R) compared to the existing minimal solver
(p6L) [7], we compared the performance of two minimal
solvers, with the same ray cloud and presented results in Ta-
ble 1. We confirm that p5+1R solver surpasses p6L in pose
accuracy and inference speed. We cautiously anticipate the
reason for this lies in that Stewenius’ 6-point solver [8] ba-
sically does not assume concentric generalized camera rays
like a ray cloud. As concentric generalized rays can induce
degeneracy in generalized essential matrix estimation, it can
lead to trivial solutions as mentioned in [10]. On the other
hand, the p5+1R solver utilizes a classical relative pose es-
timation solver [5] thereby achieving real-time inference
speed without heavily compromising pose accuracy. Also,
algorithmic details for pose estimation of ray cloud using
p5+1R solver are described in our Algo. 1.

1.2. Changing distance between two ray centers

To set the position of center points of the ray cloud, we em-
ployed K-means clustering (K=2) and regarded the center
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Dataset Solver Rot. err. [◦] ↓ Trans. err. [m] ↓ t [ms] ↓
mean median mean median mean

Energy
Landscape

p6L [7] 0.457 0.264 0.016 0.008 88
p5+1R(ours) 0.262 0.087 0.010 0.003 6

Cambridge p6L [7] 0.950 0.346 0.269 0.155 147
p5+1R(ours) 0.855 0.222 0.219 0.107 12

Table 1. Effect of minimal solvers on localization with the same
ray cloud. Bold results indicate the best result in each metric.
Our proposed minimal solver p5+1R shows great improvements
in inference speed and accuracy compared to the p6L solver [7].

of clusters as center points. The motivation for this came
from the expectation that the centers of two clusters will
not be close unless the 3D points are close together. Fig. 1
illustrates the empirical results of pose accuracy according
to the baseline distance between two ray centers. We mea-
sured pose estimation errors by using the distance between
two points determined by K-means clustering as the refer-
ence baseline distance and adjusting the distance between
the two centers by reducing or increasing with various dis-
tance ratios from the reference distance.

Figure 1. Effects of distance of baseline between two virtual per-
spective camera in the ray cloud in pose accuracy. (Top) Energy
Landscape [9], (bottom) Cambridge [2] dataset.

We observe that when the baseline distance is extremely
small (distance ratio = 0.01), rotation error and translation
error increase compared to the results of the original base-
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line results (distance ratio = 1.0). Particularly for transla-
tion, we confirm that, as the two center points get closer, the
error increases significantly due to the increased ambiguity
in the scale of the overall scene. On the other hand, as the
distance increases, the pose errors in rotation and translation
rise, which is thought to originate from more quasi-parallel
rays. The empirical results in Fig. 1 indicate that using the
centers from K-means clustering provides a “sweet spot”
for ray cloud construction although estimating the optimal
(trade-off) position requires further investigation.

1.3. Effect of changing voxel size in ray sampling

In [4], we expected a trade-off between localization accu-
racy and privacy-preserving performance in voxel-based ray
clouds depending on the size of the voxel. To verify this, we
estimated localization accuracy and privacy-preserving per-
formance for different voxel sizes as illustrated in Table 2.

Dataset
Voxel

size [m]

∆R[◦] ∆T [cm] eg [m] PSNR SSIM MAE

mean mean median mean mean mean

Energy

landscape

None 0.262 0.99 0.669 10.29 0.319 62.97

0.1 0.267 1.01 0.685 10.26 0.317 63.42

0.25 0.277 1.03 0.723 10.15 0.314 64.00

0.5 0.297 1.09 0.770 10.05 0.315 64.84

Cambridge

None 0.855 21.91 9.614 10.41 0.261 60.98

1.0 0.861 22.26 9.806 10.44 0.258 60.91

5.0 0.880 23.46 10.54 10.23 0.253 62.56

10.0 0.934 27.27 10.27 10.01 0.254 64.27

Table 2. Comparison of pose accuracy and reconstruction re-
sults of our voxel-based sampled ray cloud with different voxel
sizes. Note we set ray rejection hyperparameter β=25% for both
datasets, denoting a fraction of rays aligned to the baseline.

As expected, the camera localization accuracy decreases
as the voxel size increases, indicating that introducing non-
uniform distribution of 3D rays arising from voxel-based
sampling lead to a slight decrease in localization accu-
racy. Regarding the privacy-preserving capability, voxel-
based ray sampling has degraded the quality of point recon-
struction more than lifted from random point-center pair-
ing, demonstrating more 3D lines from closest points are
excluded during neighbor line estimations and consequently
yielding more false positive rays in density-based inversion.

As rejection when β=50% shows the highest reconstruc-
tion quality of scene images (Table 2 in [4]) on the Energy
Landscape [9] dataset, we also conducted experiments to
verify the robustness of voxel-based ray sampling against
rejection (β=50%) and present overall results in Table 3.
These results also confirm the enhanced privacy-preserving
capability of the voxel-based approach.

Dataset
Voxel

size [m]

∆R[◦] ∆T [cm] eg [m] PSNR SSIM MAE

mean mean median mean mean mean

Energy

landscape

None 0.262 0.99 0.669 10.29 0.319 62.97

0.1 0.267 1.01 0.755 10.38 0.320 62.08

0.25 0.277 1.03 0.783 10.31 0.318 62.82

0.5 0.297 1.09 0.792 10.11 0.316 64.36

Table 3. Comparison of pose accuracy and reconstruction results
of our voxel-based sampled ray cloud with different voxel sizes.
Note we set β=50% for Energy Landscape [9].

2. Discussions on revealing points in ray cloud
In [4], we raised two reasons for trivial recovery of 3D
points, i) lower significance of nearest points for estimating
3D points, and ii) bad estimation of true nearest rays lifted
from nearest points. In this section, we present additional
experimental results to support the underlying reasons.

2.1. Reduced significance of nearest points for esti-
mating 3D point

Chelani et al. [1] used the assumption that when two lines
have uniform line direction, the closest point to another
line along the current line can be regarded as a good point
candidate based on their empirical finding, that there is a
higher probability (0.8) of the distance between the point
and the candidate is less than the distance between the two
3D points. As the distance between two points decreases,
accurate point estimation by point candidates becomes fea-
sible. This means that accurate point estimates can be ob-
tained from the nearest neighboring points, enabling accu-
rate recovery of 3D points.

To investigate whether this assumption is also valid in
ray cloud, we conducted experiments using the real scene
data (apt1 living [9], old hospital [2]), randomly sampled
1000 lines from each scene representation and measured
the empirical probability that the distance between the point
(p1) and its candidate (p̂1) is less than the distance between
the two points (p1,p2) and present overall results in Ta-
ble 4. The uniform line cloud [7] showed a high probability
of about 0.8, indicating that the nearest points can lead to
highly accurate point recovery by good point candidates.

In contrast, the ray cloud exhibited a probability lower
than 0.8, especially showing an average probability of about
0.64 for both scenes when trivial solutions are included.
This suggests that when the ray cloud contains trivial so-
lutions, the accuracy of point recovery with nearest points
is lower than that of the uniform line cloud.

On the other hand, only using rays from opposite cen-
ter (described in Sec. 4.1 of [4]) to prevent trivial point re-
covery showed some improved probability. The removal of
trivial solutions prevents point candidates from being gen-
erated at the current ray center and this might lead to an



apt1 living [9] old hospital [2]
Uniform line cloud [7] 0.785 0.783

Ray cloud (w/ trivial recovery) 0.638 0.637
Ray cloud (w.o trivial recovery) 0.728 0.683

Voxel-based ray cloud
(w/ trivial recovery)

0.632 0.623

Voxel-based ray cloud
(w.o trivial recovery)

0.722 0.669

Table 4. Suppose we sample two points p1 and p2 from a point
cloud. Their lifted line representations are denoted as l1 and l2
respectively. Then, p̂1 is the closest point to l2 along the line
l1 (lifted from p1) and serves as the estimate for the location of
p1. Above table shows the probability of this assumption being
true for different scene representations across different datasets.
Randomly selected 1000 lines in apt1 living [9] and old hospital
scene [2] were used for experiments.

increase in the probability. However, it still showed a lower
probability than the uniform line cloud and this supports the
results of recovery in the oracle case (Fig. 6 in our main pa-
per [4]) that when nearest points are known, the restored
result of the ray cloud with removed trivial solutions shows
more accurate recovery but is still inferior to the result of
the uniform line cloud.

2.2. False positive rays

In [4], we suggested two cases where false positive rays can
lead to bad estimations, namely due to i) the shrinking effect
towards the ray centers and ii) rise of multiple peaks. In this
subsection, we report our empirical findings on these two
cases in a synthetic “room” environment.

Illustration of the shrinking effects: Fig. 2 illustrates
the shrinking effect when the current ray passes close to
the opposite ray center as shown in Fig. 2a. In such case,
the estimated peak incorrectly identified near the opposite
ray center as shown in Fig. 2b due to high density of rays
around the opposite ray center. Vice versa, Fig. 3b shows
that when there are rays from the opposite center near the
current ray center as Fig. 3a, the generated point candidates
exist around the current ray center. The above two empirical
cases explicitly show the shrinking recovery of 3D points
into the ray centers and the qualitative restoration results of
real scene geometries are shown in Fig. 7d and Fig. 7e.

Illustration of multiple peaks in histogram of point can-
didates: In a room-like environment as shown in Fig. 3a,
we observe the existence of multi peaks in the histogram
of point candidates (Fig. 3b) potentially due to congested
rays producing may close rays whose actual points are
far away from the current ray, degrading the geometry in-
version qualtiy. Similar phenomenon is also observed in
Fig. 3d for a real scene (Fig. 3c). This shows that, unless
the actual location of the points are provided in advance
(i.e. the oracle case), it will be very challenging to estimate
the actual peak among multiple peaks.

3D line to invert

Center1

Center2

3D point

Line from center 2

(a) Illustration of 3D ray to invert in 3D cuboid toy example (bird-eye-view)

Incorrect peak

(b) Histogram of the point candidates along the ray in (a)

Figure 2. Illustration of shrinking effect in a toy example. In (b),
we projected the opposite ray center into the current ray (dotted
line with sky color) to figure out the location of the closest point to
the opposite ray center. (b) demonstrates that the estimated peak
is close to the opposite ray center.

apt1 living [9] old hospital [2]
Uniform line cloud [7] 0.336 0.151

Ray cloud (w.o trivial solutions) 0.224 0.078
Ray cloud (w/ rejection) 0.290 0.120

Voxel-based ray cloud (w/ rejection) 0.191 0.043

Table 5. Empirical probability of rays from k-nearest points
(k=100) being found in the set of K-nearest rays (K=1000) esti-
mated with neighboring lines estimation based on line-to-line dis-
tance. Lower probability means the line-to-line neighborhood es-
timation does not provide a good estimate of point-wise nearest
neighbors which is required for the method of Chelani et al. [1] to
recover the scene geometry. For experiments, apt1 living [9] and
old hospital scene [2] were used.

Quantitative analysis of effect of false positive rays:
We also empirically observe that the assumption [1] in line
clouds that the K-nearest lines will overlap enough with the
set of lines lifted from the k-nearest points (K>k) is weak-
ened for ray clouds.

In Table 5, we measured the probability of rays from k-
nearest points (k=100) found on indices of rays from K-
nearest points (K=1000). The uniform line cloud exhibited
the highest empirical probability in both scenes, supporting
the assumption in [1]. In the case of ray cloud, by estimating
K-nearest rays using only rays from the opposite ray center
to eliminate trivial solutions, the probability becomes lower
than the uniform line cloud. However, applying the pro-
posed rejection (beta=25%) along with using rays from the
opposite ray center, the probability increased in both scenes.



This demonstrates that the rejection eliminated some false
positive rays, leading to a higher inclusion of rays from the
k-nearest points. However, in ray clouds generated based
on a voxel grid, this probability sharply declines. This may
be due to a large number of adjacent k-nearest points exist-
ing within the same voxel, causing them to be paired with
the same ray center and not included in the estimation of
K-nearest rays. The overall results in Table 5 indicate that
the accuracy of point restoration through the estimation of
K-nearest lines (rays) is lower in ray cloud than in uniform
line cloud showing the existence of the false positive rays.

In summary, the reduced accuracy in geometric restora-
tion in the ray cloud can be attributed to the lower precision
in estimating rays from k-nearest points through K-nearest
lines (rays) estimation. Furthermore, the probability of ob-
taining good point candidates from nearest points is also
lower in ray cloud compared to uniform line cloud. These
two reasons seem to diminish the geometric restoration ac-
curacy of the ray cloud.

3. Further discussions on experimental results

3.1. Inversion results with refined estimation

In the coarse estimation step in [1], initial points are esti-
mated by performing neighboring line estimation based on
line-to-line distance. Then there is a refinement step [1]
based on computing the distances between the coarsely es-
timated points and lines. However, for the case of the ray
cloud, we observe in Table 6 that the refine results is actu-
ally worse than the coarse estimation results reported in [4].
We anticipate this may be due to highly erroneous corase
estimation leading to diverging solutions.

For a fair comparison, we also compared the results of
the coarse estimation of uniform line clouds [7] and PPL [3]
with the results of ray clouds (see Fig. 11). The geometric
error shows that the ray cloud and voxel-based ray cloud
still have higher values compared to the uniform line cloud
and PPL, and the visualization results are also much more
unrecognizable, demonstrating that the reconstruction of
ray clouds is not more inaccurate than other scene repre-
sentations simply due to the lack of refinement.

3.2. Increased SSIM for reduced ray density

In [4], we observed a slight increase in SSIM with reduced
line density. However, the additional figures provided in
this document suggest this quantitative difference is not
highly noticeable in terms of qualitative analysis. Fig. 6
shows the qualitative and SSIM comparison of the restored
images at different line densities. Fig. 6b showed the high-
est SSIM, restored at 10% line density, but the qualitative
results of the restored scene details still remain unrecogniz-
able. Similarly, Fig. 6i exhibited the highest SSIM, but the
reconstructed image is also unrecognizable.

3D line to invert

Center1

Center2

3D point

Line from center 2

(a) Illustration of 3D ray to invert in 3D cube toy example (bird-eye-view)

Multi-peaks

(b) Histogram of point candidates along the ray in (a)

Selected ray to invert Rays from opposite center

Center1

Center2

Center1

Center2

(c) Illustration of 3D ray to invert in apt2 luke scene [9]

Multi-peaks

(d) Histogram of point candidates along the ray in (c)

Figure 3. Illustration of current ray that needs to be inverted in
(a) toy example, (c) apt2 luke, and (b), (d) the histogram of point
candidates along the current ray obtained through the nearest line
(ray) estimation.

4. Additional results

Fig. 4 shows the results of point-to-image translation using
InvSfM when trivial 3D point recovery is performed. When
all points are restored to the two centers, the obtained im-
ages(Fig. 4b) seem to have no meaningful content. Fig. 5
illustrates image reconstruction quality in relation to local-
ization performance across different methods and line den-
sity with Cambridge [2] dataset, demonstrating the capa-
bility of privacy-preserving of ray cloud-based approaches,
especially for dense scenes. Fig. 7 and Fig. 8 show addi-



Dataset
Rejection

threshold (β)

eg[m] PSNR SSIM MAE

median mean mean mean

Energy

Landscape

None 1.027 / 1.515 9.96 / 9.99 0.330 / 0.375 66.06 / 70.41

10% 0.761 / 1.300 10.24 / 9.75 0.323 / 0.353 63.62 / 70.57

25% 0.669 / 0.964 10.29 / 9.78 0.319 / 0.343 62.97 / 69.30

50% 0.746 / 0.918 10.32 / 9.72 0.320 / 0.337 62.52 / 69.87

Cambridge

None 11.47 / 18.81 10.10 / 9.70 0.273 / 0.288 64.06 / 69.48

10% 10.29 / 15.57 10.35 / 9.57 0.267 / 0.265 61.60 / 68.94

25% 9.614 / 15.11 10.41 / 9.59 0.261 / 0.256 60.98 / 68.28

50% 12.98 / 15.77 9.94 / 9.42 0.242 / 0.245 64.70 / 69.88

Table 6. Coarse/refined estimation results of our modified inversion attack [4] on the ray cloud with different rejection thresholds (β).

(a) Ground truth (b) Trivial solution
(PSNR: 10.56)

(c) Non-trivial solution
(PSNR: 12.78)

Figure 4. Revealed images of apt2 living scene [9] from the ray
cloud without preventing trivial solutions (b) and with preventing
trivial solutions [4]. Since we got only center points as a result of
inversion including trivial solutions, the obtained image (b) with
InvSfM [6] doesn’t contain any detailed contents of the scene. In
contrast, the reconstructed image (c) with our proposed method for
preventing trivial solutions shows qualitative and improved PSNR
compared to the non-trivial result.

tional qualitative results for the recovered point clouds and
the images obtained from them. As can be seen, the recov-
ery of the geometry of the ray cloud and voxel-based ray
cloud showed degraded results than the uniform line cloud
and PPL. Also, synthesized images of ray cloud and voxel-
based from reconstructed point cloud are unrecognizable,
demonstrating their ability to conceal the scene details.
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Figure 5. Averaged localization performance vs. reconstructed image quality across different levels of ray density on the Cambridge [2]
dataset. The tested line densities are 100% (biggest marker), 50%, 25%, and 10% (smallest marker).

(a) Ground truth (b) 10%, SSIM=0.342 (c) 25%, SSIM=0.322 (d) 50%, SSIM=0.323 (e) 100%, SSIM=0.325

(f) Ground truth (g) 10%, SSIM=0.355 (h) 25%, SSIM=0.370 (i) 50%, SSIM=0.371 (j) 100%, SSIM=0.368

Figure 6. Comparison SSIM of revealed images from different levels of line density in the ray cloud (w.o. voxel-based ray sampling).
Note, β=25% rejection was applied.



(a) Ground truth (b) Uniform line cloud [7] (c) PPL [3] (d) Ray cloud (ours) (e) Voxel-based ray
cloud(ours)

Figure 7. Visualization of qualitative results of the reconstructed point cloud from (b) uniform line cloud [7], (c) Paired-Point Lift-
ing(PPL) [3], (d) Ray cloud, and (e) Voxel-based ray cloud. For ray cloud and voxel-based ray cloud, rejection (β=25%) was applied
during neighbor estimations.



(a) Point cloud (b) Uniform line cloud [1] (c) PPL [3] (d) Ray cloud (w.o rejec-
tion)

(e) Ray cloud (w. rejec-
tion)

(f) Voxel-based Ray cloud

Figure 8. Comparison of revealed images from ground truth point cloud, uniform line cloud [7], PPL [3], ray cloud without and with
rejection (β=25%) and using InvSfM [6].
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Figure 9. ECDF of rotation & translation errors of estimated camera pose by each data from [9]
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Figure 10. ECDF of rotation & translation errors of estimated camera pose by each data from [2]

(a) Ground truth (b) Uniform line cloud [7], eg = 0.12 (m) (c) PPL [3], eg = 0.08 (m)

(d) Ray cloud (w.o. rejection), eg = 0.88 (m) (e) Ray cloud (w. rejection (β=25%)), eg = 0.65 (m) (f) Voxel-based ray cloud, eg = 0.75 (m)

Figure 11. Visualization of coarse inversion results from each scene representation of apt2 living [9]. eg denotes median 3D point error
(m).



Algorithm 1 Algorithmic procedures of LO-RANSAC implementation for pose estimation of ray cloud.
Input: Correspondences C(p,L) between 2D point p and 3D rays L
Output: Absolute pose Rabs, tabs

Given: Generalized rig1← Two virtual cameras in the ray cloud
Generalized rig2← Query camera
Inlier threshold (max epipolar error) τ ← 2.0(px)/ Query camera focal length

▷ Calculate pose with proposed minimal p5+1R solver
BEST POSE← ∅
inlier countbest ← 0, inlier countLO ← 0
MSAC SCOREbest ← inf , MSAC SCORELO ← inf
for iter ← 0 to MAX ITER do
CUR POSE = [ ]

j ← Randomly selected jthcamera in rig1 (j ∈ (1, 2))
▷ Initialize jthcamera
[Rj |tj ]← [I| − cj ]

▷ Draw 5 correspondences Ci5 between jth virtual camera and query image
for Ci5 ∈ C do

Calculate POSErel from Relative 5-points algorithm [5] using Ci5
(unknown scale α)

for [Rqj |αt̂qj ] ∈ POSErel do
Absolute pose of pinhole camera [Rq|tq ]← [Rqj |αt̂qj − Rqjcj ]
▷ Draw extra correspondence Ci1

between the remaining virtual camera and query image
(p1, p2)

⊤ ∈ R2 ← Normalized 2D key point pi1
from Ci1

(pi1
,Li1

)

n̂← Normalize(Li1 ) ∈ S2

▷ Rescale t̂qj by using the extra correspondence
Calculate (λ1, λ2, α) w.r.t. the Equation: λ1[p1, p2, 1]

⊤ = λ2Rqj n̂ + αt̂qj − Rqjcj

CUR POSE.append([Rqj |αt̂qj − Rqjcj ])
end for

end for

▷ Find best local model
Index of BEST POSE : M ← −1
for k ← 0 to CUR POSE.size()-1 do
▷ Align two generalized rigs with modelk and calculate
pi ∈ R2 ← ith normalized keypoint in query image
n̂i ∈ S2 ← corresponding ith 3D normalized ray
Ω← All of the pairing between ith keypoints and jth ray center in the query image
Ej := [ej1, ej2, ej3]

⊤ ← Essential matrix between jth virtual camera and query camera

MSAC SCOREk ←
∑

(i,j)∈Ω min

(
([p⊤

i ,1] Ej n̂i)
2

(e⊤
j1

n̂i)
2+(e⊤

j2
n̂i)

2 , τ2

)
inlier countk ←

∑
(i,j)∈Ω 1A(i, j), where A := {(i, j)|

([p⊤
i ,1] Ej n̂i)

2

(e⊤
j1

n̂i)
2+(e⊤

j2
n̂i)

2 ≤ τ2}

▷ Check to update best model
if inlier countLO ≤ inlier countk or MSAC SCOREk ≤ MSAC SCORELO then
M ← k
inlier countLO ← inlier countk
MSAC SCORELO ← MSAC SCOREk
if MSAC SCOREk < MSAC SCOREbest then
inlier countbest ← inlier countk
MSAC SCOREbest ← MSAC SCOREk
BEST POSE← CUR POSE[k]

end if
end if

end for

▷ Local refinement
BEST POSE← CUR POSE[M ]
POSErefined ← Non-linear (LM) optimization from BEST POSE
if MSAC SCORErefined < MSAC SCOREbest then
inlier countbest ← inlier countrefined

MSAC SCOREbestd ← MSAC SCORErefined

BEST POSE← POSErefined

end if
end for

▷ Final refinement using only inliers
POSErefined ← Non-linear (LM) optimization from BEST POSE
if MSAC SCORErefined < MSAC SCOREbest then
inlier countbest ← inlier countrefined

MSAC SCOREbest ← MSAC SCORErefined

BEST POSE← POSErefined

end if
Return Rabs, tabs ← BEST POSE
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