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A. Introduction

In this supplementary material, we present an in-depth anal-
ysis of our proposed coarse-to-fine training strategy for self-
supervised monocular depth estimation (DE). Specifically,
we address the novelty of our usage of ground contacting
prior (Sec. B) and provide an extended ablation study focus-
ing on two key components: the Ground-contacting-prior
Disparity Smoothness Loss (GDS-Loss) employed in our
coarse training stage (Sec. C.1) and the regularization loss
applied during our fine training stage (Sec. C.2).

Additionally, we provide comprehensive experimental
results showcasing the performance enhancements achieved
by our training strategy on three benchmark datasets:
Cityscapes [6] (Sec. D.1), KITTI [38] (Sec. D.2) and
DDAD [17] (Sec. D.3). Also, we show the robustness of
our proposed training strategy by using high-resolution im-
ages (Sec. D.4) and a different segmentation method (Sec.
D.5). To further illustrate the impact of our approach, we
present qualitative comparisons, including estimated depth
maps and 3D point cloud reconstructions, to demonstrate
the significant improvements brought by our coarse-to-fine
training strategy (Sec.D.6).

B. Usage of Ground Contacting Prior

The concept of ground contacting prior has been previously
explored in the monocular 3D object detection (M3OD)
methods [35, 44, 56]. However, our usage of this concept
diverges fundamentally in several critical aspects in that (i)
while the depth GTs must be used for M3OD methods, our
overall training pipeline learns the depth of ground and dy-
namic objects in a completely self-supervised manner; (ii)
while M3OD methods learn to localize the ground contact-
ing points by using predicted anchors in the pipelines, our
GDS-Loss induces a model to learn by weighting the bot-
tom side of the segmentation masks with Mgr (Eq. 8); and
(iii) while M3OD methods suggested the network architec-
tures to fuse the feature of ground depth, our GDS-Loss
induces the various DE networks to align the depths of dy-
namic objects with the depth of ground contacting points,
without any architecture modification. It should be noted
that our usage of ground contacting prior is the first self-
supervision for the depth of dynamic objects without depth
GTs.

γ in LGDS abs rel ↓ sq rel ↓ rmse ↓ logrmse ↓ a1 ↑

1 WIR 0.113 1.404 6.349 0.169 0.890
DOR 0.159 2.353 5.825 0.198 0.844

10 WIR 0.110 1.262 6.218 0.166 0.888
DOR 0.152 2.023 5.451 0.190 0.849

100 WIR 0.104 1.097 6.034 0.160 0.895
DOR 0.125 1.185 4.459 0.161 0.876

1000 WIR 0.105 1.140 6.134 0.164 0.889
DOR 0.131 1.044 4.545 0.166 0.850

Table 5. Ablation study on the value of γ in our GDS-Loss LGDS

by training Monodepth2 [13] on Cityscapes [6] in a resolution of
192 × 640. WIR and DOR indicate the performance measures
over the whole image regions and over the regions of objects in
dynamic classes only, respectively.

C. Additional Ablation Study

C.1. GDS-Loss

Our proposed GDS-Loss LGDS induces a DE network to
align the depth of objects in dynamic classes (cars, bicycles,
and pedestrians) to be consistent with the depth of their con-
tacting ground. For this, we extend the edge-aware dispar-
ity smoothness loss [12] with the ground-contacting-prior
mask Mgr given as

Mgr(i, j) = γ ·Mt(i, j) + (1−Mt(i, j)), (16)

where Mt ∈ R(n−1)×m is a binary dynamic instance mask,
valued 1 for the region of objects in dynamic classes and 0
otherwise. We utilize Mgr in our GDS-Loss LGDS , which
is defined as

LGDS = |∂xd̂t| e−|∂xI
m
t | + |∂yd̂t|Mgre

−|∂yI
m
t |, (17)

where input image It is replaced with the masked image
Imt for guiding consistent depth inside the object regions.
A higher value of γ in Eq. 16 encourages a DE network
to predict consistent depth between the objects in dynamic
classes and their contacting ground points.

Table 5 presents a comparative analysis of DE perfor-
mance, influenced by varying γ values ([1, 10, 100, 1000])
in GDS-Loss. Please note that we train Monodepth2 [13]
with masking the objects in dynamic classes from the re-
projection loss Lrep for all experiments in Table 5 to avoid
inaccurate learning on the object regions. When γ is low
(1 or 10), the ground-contacting-prior mask Mgr fails to ef-
fectively guide the DE consistency between the objects and



Filtering LREG abs rel ↓ sq rel ↓ rmse ↓ logrmse ↓ a1 ↑

[40] WIR 0.124 1.620 6.739 0.187 0.868
DOR 0.214 4.372 7.218 0.257 0.769

δD
Dmax

= 0.01
WIR 0.106 1.072 6.230 0.165 0.883
DOR 0.120 1.054 4.377 0.160 0.875

δD
Dmax

= 0.05
WIR 0.102 1.024 6.015 0.159 0.896
DOR 0.119 1.044 4.270 0.157 0.881

δD
Dmax

= 0.1
WIR 0.103 1.109 6.074 0.159 0.896
DOR 0.120 1.112 4.379 0.157 0.881

Table 6. Ablation study on the fine training stage by finetuning
Monodepth2 [13] initially trained with our coarse training stage
on Cityscapes [6] in a resolution of 192× 640.

their contacting ground, leading to suboptimal DE perfor-
mance, especially on the dynamic class object regions. It is
shown that a value of 100 for γ achieves the best DE per-
formance in both whole image regions and the regions of
objects in dynamic classes.

C.2. Regularization Loss

Following the initial training using GDS-Loss LGDS and a
masked reprojection loss Lm

rep in the coarse stage, we refine
the depth estimation (DE) network. We denote the fixed DE
network that is initially trained in the coarse stage as θ1∗depth
and the DE network to be further refined as θ2depth. Please
note that the DE network θ2depth is initialized as the weight
of θ1∗depth. In Table 6, we present the DE performance of
the Monodepth2 [13] model trained with various regular-
izations in the fine training stage.

In the first row of Table 6, the DE performance of the
regularization using the filtering scheme proposed in [40]
is shown. This method utilizes the depth predictions of
θ1∗depth for the target frame and its neighbor frames, while
The depth maps of neighbor frames are warped into the po-
sition of the target frame with the scale adjustment. The 3D
inconsistent pixels with large depth differences are identi-
fied based on the threshold and excluded from the calcula-
tion of the reprojection loss Lrep. However, this filtering
scheme sometimes fails to filter out pixels and induces in-
accurate learning of depth in the moving object regions. As
a result, it is shown that the DE performance of the DE net-
work regularized with the filtering scheme [40] is degraded,
especially in the region of objects in dynamic classes.

In contrast, our proposed regularization loss focuses on
aligning the depth predictions of θ2depth with those of θ1∗depth,
instead of excluding pixels from the reprojection loss Lrep.
In order to penalize the pixels in the moving object re-
gions, we utilize the cost-volume-based-weighting factor
λcv , which is defined as

λcv = max

(
|D1

t −Dcv
t |

δD
, 1

)
. (18)

Our regularization loss LREG is expressed as

LREG = λcv ·max(|D1
t −D2

t |, µcvδD), (19)

where µcv = [λcv = 1] ([·] is an Iverson bracket) and δD is
a hyperparamter of an allowable depth difference between
θ2depth and θ1∗depth. Note that small δD induces strong consis-
tency while large δD alleviates the regularization strength.

In the last three rows of Table 6, we present an analysis
of various δD/Dmax values within our regularization loss
LREG. It is shown that our method maintains DE perfor-
mance effectively across a range of δD settings, demonstrat-
ing the robustness of LREG against hyperparameter varia-
tions. Moreover, our regularization method offers a more
suitable solution to regularizing the self-supervised monoc-
ular DE tasks.

D. Additional Experimental Results

In Table 7 and 8, we provide the DE performance compar-
ison between existing self-supervised monocular DE meth-
ods including Monodepth2 [13], HR-Depth [37], CADepth
[52], MonoViT [54] and those trained with our coarse-to-
fine training strategy on Cityscapes [6] and KITTI [38], re-
spectively. We denote each model trained with our coarse-
training stage as Ours-Monodepth2-C, Ours-HR-Depth-C,
Ours-CADepth-C, and Ours-MonoViT-C. Also, we de-
note each model trained with our full coarse-to-fine train-
ing strategy as Ours-Monodepth2, Ours-HR-Depth, Ours-
CADepth, and Ours-MonoViT, respectively. In Table 9, we
further provide the comparative analysis of DE performance
on DDAD [17] dataset.

D.1. Cityscapes Results

In Table 7, it is shown that our coarse-to-fine training strat-
egy consistently enhances the DE performance of various
models [13, 37, 52, 54]. This enhancement is evident
in both overall image regions and specifically within the
region of objects in dynamic classes. A notable perfor-
mance enhancement is observed when comparing models
trained with traditional methods against those utilizing our
coarse stage, where the Ground-contacting-prior Disparity
Smoothness Loss (GDS-Loss) ensures precise depth super-
vision, especially for dynamic objects. Also, it should be
noted that our fine training stage further enhances the DE
performance of the models. This indicates the effective-
ness of our coarse-to-fine training strategy in handling the
moving object problem in self-supervised monocular depth
estimation, seamlessly integrating the existing DE methods
without the need for modifications such as auxiliary object
motion estimation networks.



Methods abs rel ↓ sq rel ↓ rmse ↓ logrmse ↓ a1 ↑ a2 ↑ a3 ↑
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Monodepth2 [13] 0.125 1.474 6.688 0.180 0.865 0.964 0.988
Ours-Monodepth2-C 0.104 1.097 6.034 0.160 0.895 0.972 0.99
Ours-Monodepth2 0.102 1.024 6.015 0.159 0.896 0.973 0.990

HR-Depth [37] 0.120 1.253 6.714 0.179 0.857 0.963 0.988
Ours-HR-Depth-C 0.102 1.031 5.983 0.158 0.893 0.973 0.991
Ours-HR-Depth 0.100 1.010 5.998 0.157 0.896 0.974 0.991

CADepth [52] 0.124 1.278 6.771 0.183 0.862 0.962 0.986
Ours-CADepth-C 0.099 1.018 5.706 0.152 0.903 0.977 0.992
Ours-CADepth 0.097 0.966 5.646 0.150 0.907 0.978 0.992

MonoViT [54] 0.106 1.098 6.071 0.160 0.881 0.974 0.991
Ours-MonoViT-C 0.089 0.826 5.494 0.142 0.911 0.980 0.993
Ours-MonoViT 0.088 0.795 5.368 0.140 0.920 0.981 0.994
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Monodepth2 [13] 0.185 2.432 5.919 0.218 0.794 0.918 0.962
Ours-Monodepth2-C 0.125 1.185 4.459 0.161 0.876 0.969 0.988
Ours-Monodepth2 0.119 1.044 4.270 0.157 0.881 0.970 0.989

HR-Depth [37] 0.165 2.144 5.720 0.198 0.811 0.940 0.974
Ours-HR-Depth-C 0.110 1.177 4.601 0.160 0.878 0.972 0.989
Ours-HR-Depth 0.113 1.015 4.297 0.154 0.883 0.974 0.991

CADepth [52] 0.143 1.278 4.997 0.184 0.825 0.957 0.987
Ours-CADepth-C 0.121 1.221 4.450 0.158 0.886 0.973 0.988
Ours-CADepth 0.116 1.161 4.370 0.154 0.892 0.973 0.988

MonoViT [54] 0.149 1.508 5.340 0.190 0.817 0.945 0.983
Ours-MonoViT-C 0.100 0.779 3.836 0.138 0.913 0.980 0.992
Ours-MonoViT 0.098 0.674 3.688 0.135 0.914 0.981 0.992

Table 7. Performance comparison of self-supervised DE methods trained with their original training strategy, our coarse training stage,
and our coarse-to-fine training strategy on Cityscapes [6] in a resolution of 192× 640. For the DE performance in the region of objects in
dynamic classes, we utilize masks provided by [9].

Methods abs rel ↓ sq rel ↓ rmse ↓ logrmse ↓ a1 ↑ a2 ↑ a3 ↑
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Monodepth2 [13] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Ours-Monodepth2-C 0.114 0.873 4.802 0.191 0.877 0.960 0.981
Ours-Monodepth2 0.112 0.866 4.766 0.190 0.879 0.960 0.982

HR-Depth [37] 0.109 0.792 4.632 0.185 0.884 0.962 0.983
Ours-HR-Depth-C 0.108 0.773 4.623 0.185 0.886 0.962 0.983
Ours-HR-Depth 0.108 0.775 4.614 0.184 0.886 0.962 0.983

CADepth [52] 0.105 0.769 4.535 0.181 0.892 0.964 0.983
Ours-CADepth-C 0.104 0.742 4.481 0.179 0.895 0.966 0.984
Ours-CADepth 0.103 0.730 4.427 0.179 0.895 0.966 0.984

MonoViT [54] 0.099 0.708 4.372 0.175 0.900 0.967 0.984
Ours-MonoViT-C 0.097 0.743 4.418 0.173 0.903 0.968 0.984
Ours-MonoViT 0.096 0.696 4.327 0.174 0.904 0.968 0.985

D
yn

am
ic

O
bj

ec
tR

eg
io

n

Monodepth2 [13] 0.192 2.853 8.011 0.277 0.749 0.901 0.949
Ours-Monodepth2-C 0.187 2.640 7.870 0.272 0.754 0.898 0.952
Ours-Monodepth2 0.183 2.539 7.723 0.268 0.757 0.900 0.954

HR-Depth [37] 0.191 2.722 7.859 0.273 0.743 0.890 0.949
Ours-HR-Depth-C 0.179 2.249 7.439 0.264 0.753 0.907 0.955
Ours-HR-Depth 0.177 2.191 7.395 0.264 0.755 0.907 0.955

CADepth [52] 0.174 2.208 7.361 0.263 0.764 0.902 0.954
Ours-CADepth-C 0.166 1.884 7.002 0.254 0.765 0.914 0.959
Ours-CADepth 0.164 1.794 6.873 0.250 0.767 0.920 0.963

MonoViT [54] 0.161 1.944 7.032 0.250 0.790 0.921 0.959
Ours-MonoViT-C 0.157 1.716 6.796 0.244 0.797 0.927 0.963
Ours-MonoViT 0.155 1.659 6.752 0.244 0.796 0.924 0.963

Table 8. Performance comparison of self-supervised DE methods trained with their original training strategy, our coarse training stage,
and our coarse-to-fine training strategy on KITTI [38] in a resolution of 192 × 640. For the DE performance in the region of objects in
dynamic classes, we utilize Mask2Former [5] instance segmentation network to obtain binary instance masks that include cars, bicycles,
and pedestrians.



Method abs rel ↓ sq rel ↓ rmse ↓ logrmse ↓ a1 ↑

Monodepth2 [13] 0.192 4.419 20.081 0.335 0.687

Ours-Monodepth2-Coarse 0.180 4.004 18.250 0.307 0.726

Ours-Monodepth2-Fine 0.179 3.870 17.668 0.299 0.732

Table 9. Performance comparison of Monodepth2 [13] trained
with the original strategy, our coarse stage and fine stage, respec-
tively, on DDAD [17] dataset.

Method Res. abs rel ↓ sq rel ↓ rmse ↓ logrmse ↓ a1 ↑

Monodepth2 [13] HR WIR 0.125 1.613 6.672 0.181 0.868
DOR 0.212 4.537 7.129 0.236 0.784

Ours-Monodepth2 HR WIR 0.097 0.982 5.698 0.151 0.909
DOR 0.113 1.003 4.188 0.152 0.891

Table 10. Performance comparison of Monodepth2 [13] and
Ours-Monodepth2 at the high resolution (HR) of 320 × 1024 on
Cityscapes [6]

D.2. KITTI Results

Table 8 presents a comprehensive evaluation of our coarse-
to-fine training strategy applied to the existing DE methods
[13, 37, 52, 54] on KITTI [38]. Although KITTI dataset
[38] contains a relatively smaller amount of moving objects
compared to Cityscapes [6], our training strategy consis-
tently enhances DE performance across all models, partic-
ularly in regions of objects in dynamic classes. This con-
sistent improvement shows the generalizability and effec-
tiveness of our self-supervised monocular depth estimation
training strategy in outdoor monocular driving datasets.

D.3. DDAD Results

Table 9 presents a comparative analysis of the DE perfor-
mance between the original Monodepth2 [13] and Ours-
Monodepth2 at a resolution of 384 × 640 on DDAD [17]
dataset. Since DDAD dataset contains numerous moving
objects in the training scenes, our coarse-to-fine training
strategy substantially enhances the DE performance com-
pared to the result of Monodepth2 [13] trained with the orig-
inal strategy. It demonstrates the robust generalizability of
our coarse-to-fine training strategy across various datasets.

D.4. High Resolution Results

In Table 1 and 2, it is shown that our proposed training strat-
egy significantly improves the DE performance with low-
resolution (128× 416) and medium-resolution (192× 640)
images. In Table 10, we further show the enhancement of
DE performance from our training strategy, by training and
testing the baseline model, Monodepth2 [13], using high-
resolution images (320× 1024) on Cityscapes. The perfor-
mance improvement from our training strategy in terms of
absrel metric is 22% in the whole image region and 47%

Method Seg.M abs rel ↓ sq rel ↓ rmse ↓ logrmse ↓ a1 ↑

Ours-Monodepth2
R-50 WIR 0.103 1.062 6.000 0.159 0.896

DOR 0.121 1.088 4.340 0.159 0.879

Swin-S WIR 0.102 1.024 6.015 0.159 0.896
DOR 0.119 1.044 4.270 0.157 0.881

Table 11. Performance comparison of Ours-Monodepth2 with the
usage of various segmentation methods.

in the dynamic object region. This result shows the ro-
bustness and effectiveness of our training strategy with sig-
nificant advancement of DE performance in handling high-
resolution images.

D.5. Robustness to Various Segmentation Methods

In the main paper, we utilized instance segmentation masks
predicted by Mask2Former [5] with a backbone of Swin-
S (69M params). In Table 11, we compare the DE per-
formance of our method by utilizing Mask2Former with
a backbone of R-50 (44M params). Although our pro-
posed masked reprojection loss Lm

rep and GDS-Loss LGDS

utilizes instance segmentation masks, the DE performance
difference between two segmentation methods is relatively
small. Therefore, our training strategy is robust across vari-
ous segmentation methods.

D.6. Qualitative Results

We provide additional qualitative results to highlight the ef-
fectiveness of our coarse-to-fine training strategy in enhanc-
ing depth estimation (DE) performance.

D.6.1 Effectiveness of Our Fine Training Stage

In Figure 5, we demonstrate the impact of our fine training
strategy with the proposed regularization loss. Although our
Ground-contacting-prior Disparity Smoothness Loss (GDS-
Loss) induces a DE network to predict the consistent depth
of objects and their bottom region, it can occasionally in-
accurately estimate the depth of objects when their depth
varies in the vertical direction or their bottom parts are oc-
cluded by other objects. As shown in the depth maps and er-
ror maps in Figure 5, Ours-Monodepth2-Coarse predicts the
comparably imprecise depth of the cars and it is also shown
in the reconstructed point clouds. On the other hand, Ours-
Monodepth2-Fine, benefiting from our fine training stage,
achieves more precise depth on the cars, so the cars are ac-
curately reconstructed in the point clouds. Under the care-
fully designed regularization loss, the DE network learned
to estimate the detailed depth of the objects in dynamic
classes. This improvement highlights the capability of our
training strategy to achieve not only accurate but also de-
tailed depth estimations for objects.



Figure 5. Performance comparison on estimated depth maps, error maps, and the snapshots of 3D reconstructed point clouds between
Ours-Monodepth2-Coarse and Ours-Monodepth2-Fine.

D.6.2 Depth Map Comparisons with Existing Methods

Figure 6 shows the predicted depth maps from the existing
self-supervised DE methods [13, 37, 52, 54] and those mod-
els trained with our training strategy. As shown, the original
models predict erroneous depth, especially in the region of
objects in dynamic classes such as cars, bicycles, and pedes-
trians. The original models predict inaccurate depth on the
object regions, since the objects are not excluded from the
calculation of the reprojection loss and the supervision of
their depth is insufficient in the conventional self-supervised
monocular depth learning pipeline. In contrast, our training
strategy with precise depth supervision on the object regions
by using our GDS-Loss yields precise depth estimation. It
is noteworthy that our training strategy is easily integrated
into various network architectures and boosts their DE per-
formance, handling moving object problems.

D.6.3 3D Point Cloud Reconstructions: MonoViT vs.
Ours-MonoViT

Figure 7 displays the estimated depth maps and the re-
constructed point clouds from MonoViT [54] and Ours-
MonoViT. As MonoViT [54] struggles to estimate accurate
depth on the object regions, the objects in the reconstructed
point clouds are floating or sunken under the ground. On
the other hand, Ours-MonoViT predicts the accurate depth
of objects in dynamic classes such as cars, motorcycles, and
pedestrians. Thus, the objects are standing on the ground in
the reconstructed point clouds.



Figure 6. Performance comparison on estimated depth maps between (a) Monodepth2 [13], (b) Ours-Monodepth2, (c) HR-Depth [37], (d)
Ours-HR-Depth, (e) CADepth [52], (f) Ours-CADepth, (g) MonoViT [54] and (h) Ours-MonoViT in Cityscapes [6].



Figure 7. Performance comparison on estimated depth maps and the snapshots of 3D reconstructed point clouds between MonoViT [54]
and Ours-MonoViT in Cityscapes [6].


