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Supplementary Material

A. More implementation details
A.1. Weight quantization

For weight quantization, we exploit a distinct quantizer
for each output channel, following [7]. We designate the up-
per and lower bounds of weight quantizers with (100-ϵ)-th
and ϵ-th percentiles of weight values in each output channel,
where ϵ is a hyperparameter.

A.2. Hyperparameter settings

We set ϵ as 5e-2 and 1e-3 for 4/4-bit and 6/6-bit set-
tings, respectively. The values of ϵ are found using a grid
search, such that KL divergence between predictions of full-
precision and quantized ViT-T from calibration data is min-
imized. In addition, we set Niter and T in Algorithm 1 as
300 and 75, respectively, which are large enough for our
algorithm to be converged.

A.3. Perturbation metric for Mask R-CNN models

We use the Mask R-CNN [5] and Cascade Mask R-
CNN [2] with Swin transformer [9] for the tasks of object
detection and instance segmentation. The perturbation met-
ric in Eq. (9) cannot be applied directly to these models, typ-
ically having three outputs for each region of interest (RoI):
(1) a class probability, (2) a bounding-box regression offset,
and (3) a binary mask. The work of [5] proposes a multi-
task loss on each sampled RoI as L = Lcls+Lbox+Lmask,
where the loss terms Lcls, Lbox, and Lmask are defined as
the discrepancy between the outputs (i.e., class probability,
bounding-box offset, and binary mask) and corresponding
ground-truth labels. Note that Lbox and Lmask are defined
only on the bounding-box and mask corresponding to the
ground-truth class for each RoI, respectively. Refer to [5]
for more details.

For Mask R-CNN and Cascade Mask R-CNN models,
we modify the perturbation metric for each RoI in Eq. (9)
as follows:

ψ(g, l) = DKL(yl||ygl ) + |bl − bgl |+ |ml −mg
l |, (A)

where ygl , bgl , and mg
l are predictions of class probability,

bounding-box offset, and binary mask, respectively, for a
model in which the l-th layer is quantized with a group
size of g. We denote by yl, bl, and ml the predictions of
the model, where the l-th layer is left to be full-precision.
Note that we consider only the distances for the ground-
truth class during the computation of |bl−bgl | and |ml−mg

l |,
following [5]. We use Eq. (A) to solve for Eq. (10) in the
main paper.
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Figure A. Our instance-aware group quantization framework could
be implemented using existing DNN accelerators, with a slight
modification from the implementation of [3]. One might leverage
a group assignment module that computes the group indices for
each channel using Eq. (5), and the resulting indices are used to
select channels that belong to each group during matrix multipli-
cation. Corresponding rows of weight buffers are also selected.

B. Compatibility with existing hardwares

We believe that IGQ-ViT could be efficiently imple-
mented using existing neural network accelerators, with
a slight modification from the implementation of VS-
quant [3]. Specifically, [3] divides channels of activa-
tions into a number of groups, and activation values as-
signed to each group are processed with separate multiply-
accumulate (MAC) units. The outputs from each MAC
unit are then scaled with different quantization parameters.
In contrast, IGQ-ViT dynamically splits channels accord-
ing to their statistical properties for each input instance.
Compared to [3], IGQ-ViT requires additional computa-
tions, which includes computing the min/max values of
each channel, and assigning channels to quantizers with the
minimum distance. To address this, one might leverage a
group assignment module that computes the min/max val-
ues of each channel, followed by obtaining group indices
using Eq. (5) (Fig. A). The resulting indices are then used
to select channels that belong to each group. Finally, a
separate MAC unit is applied for activation values within
each group, which contains a single quantization parame-
ter. Note that computing the group indices for each channel
is computationally cheap in terms of BOPs (See Table 1 in
the main paper), and using an indexing scheme for efficient
computation is a common practice in real devices. For ex-
ample, the work of [12] implements a module providing in-
dices to dynamically detect sparsity patterns of weight and
activation values in each group. It then uses the indices to
skip groups of zero-valued weights and activations for effi-
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Figure B. Run-time latency for the tasks of (a) image classification and
(b) object detection/instance segmentation using NVIDIA RTX 3090. For
group quantization, we use a group size of 8 for all layers. For Mask-
RCNN models, we use Swin-T as the backbone.

ciency (See Fig. 15.2.3 in [12]).

C. Latency on practical devices
To further validate the efficiency of IGQ-ViT, we con-

duct a simulation in PyTorch to compare the latencies be-
tween prior group quantization techniques [1, 3, 11] and
ours. A key challenge is that most quantization methods
exploit a fake quantization approach, following [6], which
mimics the quantization process by discretizing the net-
work’s weights and activations into a finite set of floating-
point values, thereby serving a surrogate for the true quan-
tization process. This approach is inappropriate for estimat-
ing the latency on real hardwares as it does not change the
actual precision of the data, but merely introduces the con-
cept of lower precision during calibration. Accordingly, we
directly convert the data formats of weights and activations
into 8-bit representations to measure the latency more accu-
rately. Specifically, we simulate IGQ-ViT for linear opera-
tions using Eq. (7), which requires low-bit matrix multipli-
cation between weights and activations within each group,
along with the summation of outputs for each group in full-
precision. Since PyTorch does not support convolutional or
linear layers that takes low-bit matrices as input, we have
implemented their 8-bit counterparts. Note that we have
implemented the group assignment algorithm (i.e., Eq. (5))
in full-precision.

We compare in Fig. B the run-time latency of IGQ-
ViT with its variants. We can see that IGQ-ViT intro-
duces marginal overhead compared to layer-wise quanti-
zation, and consecutive grouping strategy, while achieving
high quantization performances (See Table 5 in the main pa-
per). This suggests that dynamic grouping of channels have
a limited impact on actual latency.

D. Application to DETR
We show in Table A the results of quantizing a DETR

model with a ResNet-50 [4] backbone on COCO [8]. To
the best of our knowledge, PTQ for ViT [10] is the only
PTQ method that provides quantization results for a DETR

Table A. Results of quantizing a DETR model with a ResNet-
50 [4] backbone on COCO [8].

Method #bits
(W/A)

Box AP
(Latency)

Full-precision 32/32 42.0
PTQ for ViT [10] 6/6 40.5
Ours (#groups=8) 6/6 41.1

Ours (#groups=12) 6/6 41.3

model under 6/6-bit setting. We can see that IGQ-ViT out-
performs it by 0.8% for a group size of 12.
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