
Supplementary-DiffEditor: Boosting Accuracy and Flexibility on
Diffusion-based Image Editing

Chong Mou1,3 Xintao Wang2 Jiechong Song1 Ying Shan2 Jian Zhang1,3*

1School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University
2ARC Lab, Tencent PCG 3Peking University Shenzhen Graduate School-Rabbitpre AIGC Joint Research Laboratory

In this supplementary material, we provide the following additional details to facilitate the understanding of our paper:
(1) In Sec. 1, we provide more ablation studies of our proposed DiffEditor. It includes regional SDE, guidance time steps,

image prompt, and text input.
(2) In Sec. 2, we provide more comparison results between our DiffEditor and other methods on content dragging, object

moving, resizing, pasting, and appearance replacing tasks.
(3) In Sec. 3, we present more comparisons between our method and other text-guided methods.
(4) In Sec. 4, we provide a user study of different methods on different editing tasks.
(5) In Sec. 5, we provide a further discussion of our limitations.

1. More Ablation Studies
In this section, we conduct ablation studies on more detailed components of our proposed DiffEditor.
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Figure 1. The impact of using regional SDE and the intensity of SDE randomness on the editing results. The comparison between the first
and the second rows shows that regional SDE can improve editing flexibility while maintaining good content consistency. The comparison
within each row shows that the greater the randomness intensity, the higher the editing flexibility.

Regional SDE. In our image editing process, the diffusion sampling is defined as:
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where σt = η
√
(1− αt−1) / (1− αt)

√
1− αt/αt−1. When η = 1 for all t, it becomes DDPM [3], i.e., a stochastic differ-

ential equation (SDE). As η = 0, the sampling process becomes deterministic, i.e., an ordinary differential equation (ODE).
Most diffusion-based image editing works (e.g., DragonDiff [8] and DragDiff [5]) rely on ODE to achieve better content
consistency. In this paper, we explore utilizing the randomness in SDE to improve editing flexibility while preserving content
consistency. Specifically, we design a regional SDE to locally inject the randomness:

zt−1 = medit · F(zt; η1(t)) + (1−medit) · F(zt; η2(t)),

(η1(t), η2(t)) =

{
(0.4, 0.2), t ∈ τSDE

(0, 0), t /∈ τSDE

, (2)

where F(zt; η(t)) is used to simplify Eq. 1. medit locates the editing region. In Fig. 1, we conducted an ablation study on the
details of our proposed regional SDE. The comparison between the first and the second rows shows that regional SDE can
improve editing flexibility (e.g., open the mouth) while controlling the flexibility in a local region to maintain good content
consistency in unedited regions (e.g., the background content). The comparison within each row shows that the greater the
randomness intensity, the higher the editing flexibility. After balancing the editing flexibility and accuracy, we design the
regional SDE as Eq. 2.
Guidance time steps. Our editing process is built on 50-step diffusion sampling. We incorporate editing guidance every k
steps (2 in our method) in a time interval n = [t1, t2] ([0, 30] in our method). The selection of n and k impacts the complexity
and performance of the editing process. In Fig. 2, we demonstrate the impact of the k on editing performance and complexity.
It can be seen that having guidance-skip (i.e., k > 1) can reduce the time complexity. Due to our accurate guidance design,
we can also achieve promising editing results with large k. After balancing between complexity and performance, we choose
k = 2. Fig 3 demonstrates the impact of the guidance time interval n on editing performance and complexity. It shows the
importance of adding editing guidance in the early sampling time steps. The later the sampling, the weaker the role of editing
guidance. In addition, adding guidance information in more sampling steps helps improve the quality of texture details. After
balancing the performance and computational complexity, we add score-based gradient guidance in the first 30 steps.
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Figure 2. The influence of providing editing guidance every k steps on performance and time complexity. The results show the trade-off
that applying guidance-skip (i.e., k > 1) can reduce the time complexity but weaken the editing quality.

Image prompt. In this paper, we design image prompt to enhance the description of the editing content. Mathematically, it
is defined as:
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) refer to the keys and values from the text and image prompt, respectively. γ is a weight to

balance these two terms. S is the function of Softmax. In Fig. 4, we conduct the ablation study of γ and the length of the
image prompt (i.e., number of tokens). One can see that increasing the number of tokens and raising the weight of the image
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Figure 3. The editing results generated by introducing editing guidance at different time intervals. The results show the importance of
adding guidance information in the early sampling stage, and introducing editing guidance in more sampling steps helps refine the details.
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Figure 4. The influence of the token numbers and weight of the image prompt on the editing results. The results demonstrate that an
increased number of tokens and higher weights have a positive effect on the representation of the image content.

prompt can both enhance the description of the source image content. It is worth noting that if γ is too large, it will make the
editing result being overly consistent with the original image, thereby affecting the editing effect. Finally, we choose γ = 0.5
and the number of tokens to be 64.
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Figure 5. The influence of text prompt on the editing result. This figure shows that the editing results are similar and meet the editing
requirements under different text inputs, i.e., our method is insensitive to text prompts.

Table 1. User study on object pasting, object moving, object resizing, appearance replacing, and content dragging. The evaluation includes
editing accuracy (i.e., the consistency of editing results with editing goals and original content) and editing quality (i.e., the image quality
of editing results). For each application, we select 8 samples and allow 16 volunteers to rate (0-5) them on these two aspects.

Object Pasting Object Moving & Resizing Appearance Replacing Content Dragging
Accuracy Quality Accuracy Quality Accuracy Quality Accuracy Quality

DragGAN [6] - - - - - - 4.32 3.27
Paint-by-examplt [10] 3.84 4.43 - - - - - -

Self-Guidance [2] - - 2.24 2.82 2.43 2.78 - -
DragDiff [8] - - - - - - 4.10 4.21

DragonDiff [5] 4.24 4.15 4.42 4.21 3.96 4.17 4.29 4.33
DiffEditor (Ours) 4.38 4.29 4.57 4.37 4.48 4.52 4.45 4.53

Text input. Although our method is based on the image feature correspondence [9] to achieve fine-grained image editing, our
approach is built on pre-trained StableDiffusion [7], so there is also text input. In Fig. 5, we demonstrate the impact of text
on the editing results. It can be seen that under different text inputs (relevant, irrelevant, or even contradictory to the image
content), our method can produce stable and satisfactory editing results that meet the requirements. Therefore, our method is
insensitive to text prompts.

2. More Comparison between Our Method and other Methods
In this section, we present more comparisons with other methods. Fig. 8 shows more comparisons of our method with
DragGAN [6], DragDiff [8], and DragonDiff [5] in the content dragging task. It can be seen that DragGAN has degradation
on some editing content that deviates from the training distribution (e.g., the hat, a dog in a barrel). DragDiff and DragonDiff
have limitations in flexibility, such as making the dog open its mouth. In comparison, our method performs better in editing
flexibility and accuracy. Fig. 9 and Fig. 10 show comparisons of our method with Self-Guidance [2] and DragonDiff in tasks
of appearance replacing, object moving, and object resizing. Due to the lack of consistency constraints in Self-Guidance, the
editing results deviate from the original image. In addition, it is difficult for the text to accurately correspond to the image
content in complex scenes, resulting in a lack of editing accuracy of Self-Guidance. Due to the accurate and refined guidance
design, our DiffEditor outperforms DragonDiff in editing accuracy. Fig. 11 shows more comparisons of our method with
Point-by-example [10] and DragonDiff in the object pasting task. Although the trained Point-by-example can achieve more
natural pasting effects, it is difficult to maintain the object identity. The pasting results of our DiffEditor are more consistent
with the original object.

3. More Comparison between Our Method and Text-guided Methods
In this section, we compare our approach with more text-guided image editing methods, e.g., Null-text inversion [4] and
InstructPix2Pix [1], as shown in Fig. 6. It can be seen that text guidance struggles to establish an accurate correspondence
with the editing content, making it difficult to achieve accurate editing. For instance, it is challenging to edit a single object
through text guidance in multi-object scenarios. Moreover, most text-guided image editing methods rely on text to specify
object appearance, resulting in uncontrollable randomness. In contrast, our method enables accurate specification of the
editing region and additional reference appearance.
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Figure 6. More visual comparison between our DiffEditor and other text-guided methods, i.e., Null-text inversion [4], InstructPix2Pix [1],
and Self-Guidance [2]. The results demonstrate that text-guided image editing methods struggle to achieve accurate image editing, espe-
cially in multi-object scenarios.

4. User Study on Different Tasks
In Tab. 1, we conduct a user study of different methods on different editing tasks. The evaluation includes editing accuracy
(i.e., the consistency of editing results with editing goals and original content) and editing quality (i.e., the image quality and
harmony of editing results). For each application, we select 8 samples and allow 16 volunteers to rate (0-5) them on these
two aspects. The results demonstrate the promising performance of our method.

5. Discussion of Limitations and Future Works
As described in Sec. 5 in our main paper, our method has limitations in editing scenarios that require a large amount of
content imagination while maintaining consistency. Here, we present a failure case in Fig. 7. Our editing goal is to change the
direction of the car by dragging the car’s front and rear in the opposite direction. However, the editing result slightly changes
the direction of the car and shortens the length of the car. The result mainly reflects two limitations: (1) In some scenarios,
the model cannot understand our editing goals well by only specifying the start and target points of the edit; (2) The model
still has limitations in large-scale content imagination. In future work, we will focus on addressing these limitations.



Content Dragging Results

Figure 7. The visualization of a failure case of our method. Our editing goal is to change the direction of the car, but the model does not
adequately understand our editing goal.
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Figure 8. More visual comparison between our DiffEditor and other methods (i.e., DragGAN [6], DragDiff [8], and DragonDiff [5]) on
content dragging.



Figure 9. More visual comparison between our DiffEditor and other methods (i.e., Self-Guidance [2], DragonDiff [5]) on appearance
replacing.



Figure 10. More visual comparison between our DiffEditor and other methods (i.e., Self-Guidance [2], DragonDiff [5]) on object moving
and resizing.
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Figure 11. More visual comparison between our DiffEditor and other methods (i.e., Paint-by-example [10], DragonDiff [5]) on object
pasting.
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