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Appendix
In this supplementary material, we first provide precise

definitions of the evaluation metrics (Sec. A), then we de-
scribe the color point cloud dataset we generated (Sec. B),
the details of the network architecture (Sec. C.1), and the
implementation details (Sec. C.2). We also provide addi-
tional experiments, including the choice of color system
(Sec. D.1), the noise resistance of ColorPCR (Sec. D.2),
runtime analysis (Sec. D.3), details of low overlap registra-
tion results (Sec. D.4), and hyperparameter ablation (Sec.
D.5). Finally, we provide visualizations of the registration
results on the datasets (Sec. E.1) and the registration results
in real-world scenarios (Sec. E.2).

A. Evaluation Metrics
Inlier Ratio (IR): The Inlier Ratio measures the frac-

tion of point correspondences (pi,qj) ∈ Ce that are within
a certain residual threshold under the ground truth trans-
formation TQ

P . Here, Ce denotes the estimated correspon-
dence set between point clouds P and Q, and TQ

P repre-
sents the ground truth transformation from P to Q. A pair of
correspondences is deemed to be matched if the Euclidean
Norm of their residual is less than a threshold τ1 = 10cm.
The Inlier Ratio for a pair of point clouds, P and Q, can be
computed using the following formula:

IR(P,Q) =
1

|Ce|
∑

(pi,qj)∈Ce

[∥TQ
P (pi)− qj∥ < τ1], (1)

where [·] is an indicator function that counts the number of
correspondences with residuals within the threshold τ1.

Feature Matching Recall (FMR): The Feature Match-
ing Recall [2] is a metric that quantifies the proportion of
point cloud pairs for which the Inlier Ratio surpasses a spec-
ified threshold, denoted as τ2 = 5%. This metric quantifies
the likelihood of obtaining the optimal transformation based
on the estimated correspondence set Ce, and this process is
typically carried on through a robust pose estimator such as
RANSAC. Given a dataset D that comprises |D| pairs of
point clouds, the Feature Matching Recall can be calculated
using the following formula:

FMR(D) =
1

|D|
∑

(P,Q)∈D

[IR(P,Q) > τ2]. (2)

In this formula, [·] is an indicator function that counts the
number of point cloud pairs for which the Inlier Ratio ex-
ceeds the threshold τ2.

Registration Recall (RR): Registration Recall [1] di-
rectly assesses the performance of point cloud registration.
It quantifies the proportion of point cloud pairs for which
the Root Mean Square Error (RMSE) falls within a speci-
fied threshold, denoted as τ3 = 0.2m. Given a dataset D
that comprises |D| pairs of point clouds, Registration Re-
call is defined using the following formula:

RR(D) =
1

|D|
∑

(P,Q)∈D

[RMSE(P,Q) < τ3]. (3)

For each pair (P,Q) ∈ D, the RMSE is computed as fol-
lows:

RMSE(P,Q) =

√√√√ 1

|C|
∑

(pi,qj)∈C

∥T Q
P (pi)− qj∥2, (4)

where C is the ground truth correspondences and T Q
P is the

estimated transformation .
Patch Inlier Ratio (PIR): The Patch Inlier Ratio [8] is

a metric that quantifies the proportion of superpoint (patch)
matches that exhibit actual overlap under the ground-truth
transformation. This metric provides an indication of the
quality of the putative superpoint correspondences. The
Patch Inlier Ratio can be computed using the following for-
mula:

PIR =
1

|Ĉ|

∑
(p̂i,q̂j)∈Ĉ

[∃p̃ ∈ Ũ(p̂i), q̃ ∈ Ũ(q̂j) s.t. ∥p̃−q̃∥2 < τ3],

(5)
where the matching radius is τ3 = 5cm. Here, Ĉ denotes
the estimated superpoint correspondences, and function Ũ
calculates the up-sampling point set belonging to the input
superpoint (e.g., Ũ(p̂i) ⊂ P̃).

Relative Translation and Rotation Errors (RTE and
RRE): Given the estimated transformation T Q

P ∈ SE(3),
which is composed of a translation vector te ∈ R3 and a
rotation matrix Re ∈ SO(3), the RTE Error and RRE from
the ground truth pose TQ

P can be calculated as follows:

RTE = ∥te − t∥ (6)

and

RRE = arccos

(
trace(RT

e R)− 1

2

)
. (7)

In these formulas, t and R represent the ground truth trans-
lation and rotation in TQ

P , respectively.



B. Dataset Preprocessing
3DMatch [14] combines earlier data Analysis-by-

Synthesis [11], 7Scenes [9], SUN3D [12], RGB-D Scenes
v.2 [4], etc. Most of these scenes are obtained by taking
depth images and RGB images with an RGBD camera, but
the data collected by Analysis-by-Synthesis [11] only con-
tains depth images. The official benchmark of the 3DMatch
dataset divides the dataset into 54 scenes for training and
8 scenes for testing. The Analysis-by-Synthesis data only
accounts for 8 scenes used for training, and the amount of
data is very small. In order to generate color point cloud
datasets, we delete the corresponding training data. Previ-
ous work [3] processed the 3DMatch dataset and generated
the 3DLoMatch dataset, where the 3DMatch dataset con-
tains point cloud pairs with an overlap of more than 30%,
and the 3DLoMatch dataset contains point cloud pairs with
an overlap of 10%-30%. To facilitate performance compari-
son with previous work, we follow their preprocessing data
division, eliminate the Analysis-by-Synthesis part, and col-
orize the point cloud pairs in the datasets.

The specific method is as follows: We first use the origi-
nal 3DMatch data to perform three-dimensional reconstruc-
tion for each scene, and then project the point clouds in the
preprocessed data into the three-dimensional scene to col-
orize them. By doing this, we generate the Color3DMatch
(C3DM) and Color3DLoMatch (C3DLM) datasets. We also
provide a more detailed data division. To verify the perfor-
mance of point cloud registration methods under extremely
low overlap, we further divide the C3DLM test data into
four parts with overlaps of 0.1-0.15, 0.15-0.2, 0.2-0.25, and
0.25-0.3 for future research use.

C. Implementation
C.1. Network Architecture

CEFE. We propose Color Enhanced Feature Extraction
(CEFE) backbone for hierarchical point-wise feature ex-
traction. CEFE is built upon the foundation of KPConv-FPN
[5, 10]. Specifically, we employ the down-sampling strat-
egy proposed in [10] to obtain hierarchical down-sampling
points, with a total of four down-sampling operations. The
voxel size used in the first level down-sampling is 2.5cm,
and for each subsequent down-sampling, the voxel size is
doubled. The specific execution process of CEFE is shown
in the left half of Fig. 1. We encapsulate the G1 and G2 con-
volutions in a block to carry out the feature extraction pro-
cess proposed by FPN. After performing the convolution
operations, we apply group normalization with 8 groups,
ultimately obtaining high-specificity hierarchical point fea-
tures.

GeoColor Superpoint Matching. Upon the completion
of CEFE, we match the superpoints down-sampled from it.
The process of extracting superpoint features by GeoColor

Figure 1. Network architecture of ColorPCR.

Superpoint Matching is shown in the right half of Fig. 1.
We first use geo-color information to represent global con-
text through GeoColor Positional Embedding. The super-
point features obtained by CEFE are fed into a linear pro-
jection to adjust the feature dimensions. Then, the embed-
dings and features are repeatedly processed three times in
the self-attention and cross-attention modules proposed by
[8], which thoroughly integrates color information and ge-
ometric information. After the final linear projection, the
model generates superpoint features rich in semantic infor-
mation.

C.2. Implementation Details

The training and evaluation processes of ColorPCR are
conducted on a CPU Intel (R) Xeon (R) CPU E5-2640 v4
and GPU Tesla V100-PCIE-32GB, with PyTorch [7] as the
implementation tool. ColorPCR is trained using the Adam
optimizer, with an initial learning rate of 10−4 that de-
creases by 5% per epoch. The batch size is set to 1 and the
weight decay is set to 10−6. We set the matching radius
to 5cm, consistent with the voxel size of a single down-



Feature extraction RR (%)
method color system C3DM C3DLM

GeoTransformer [8] / 91.5 74.0
GeoTransformer [8]+rgb rgb 93.5 73.9

CEFE (1) rgb 97.0 85.5
CEFE (1) hsv 97.3 87.1

Table 1. The effect of network structure under different color sys-
tems.

sampling, and point pairs smaller than the matching ra-
dius are considered points in the overlapping area. Our data
augmentation method is consistent with that of [3]. During
training, we randomly sample 128 ground-truth superpoint
matches, while in testing, we sample 256 ones.

D. Additional Experiments

D.1. Color System
Since color noise has a more significant impact on the

performance of the registration network compared to geo-
metric noise, the method of introducing color is crucial to
the performance of the registration network. Inspired by [6],
we consider the Hue-Saturation-Value (HSV) color space
and choose it to incorporate color information after con-
ducting a series of experiments (Tab. 1).

We opt to introduce color information by performing
multilevel color-enhanced feature extraction (CEFE) rather
than simply using it as an extension of the spatial dimension
(e.g., (x, y, z, h, s, v) or (x, y, z, r, g, b)). The simpler ap-
proach is not effective and may even perform worse, as this
incorrect way of introducing color completely disrupts the
spatial structure of the point cloud (as shown in the first two
lines of the table). Additionally, experiments have shown
that the RGB system is less effective compared to HSV, re-
sulting in a performance gap in registration.

HSV can be easily computed from RGB values but offers
a more stable color representation compared to the RGB
color space. Experimental verification has shown that the
HSV color space is more stable and better at integrating
with geometric information (as shown in the last two lines
of the table). In the HSV color space, H (Hue) can be com-
puted as follows:

H =


0◦, if ∆ = 0

60◦ ·
(
G−B
∆ mod 6

)
, if Cmax = R

60◦ ·
(
B−R
∆ + 2

)
, if Cmax = G

60◦ ·
(
R−G
∆ + 4

)
, if Cmax = B

(8)

and S can be computed as:

S =

{
0, if Cmax = 0

∆
Cmax

, if Cmax ̸= 0
(9)

V is the simplest:
V = Cmax. (10)

Here, R,G,B have been scaled to [0, 1] and Cmax =
max(R,G,B), Cmin = min(R,G,B) and ∆ = Cmax −
Cmin.

D.2. ColorPCR is stable against color noise.

The acquisition of point clouds is often accompanied by
noise. Intuitively, the impact of geometric noise on regis-
tration performance is relatively minor, as slight positional
deviations of individual points often result in changes in lo-
cal point density. Conversely, color noise has a far greater
impact on registration performance than geometric noise,
as color deviations can significantly affect feature extrac-
tion of points and disrupt the spatial structure information
of the point cloud.

However, ColorPCR demonstrates stability against color
noise. During the feature extraction phase, the Color En-
hanced Feature Extraction (CEFE) employs a hierarchi-
cal feature extraction approach. The entire registration pro-
cess does not involve noise-prone dense points, but instead
uses noise-diluted down-sampled points. The way CEFE
introduces color is not through geo-color feature extrac-
tion, but through color enhanced feature extraction, where
color serves only as a factor to enhance geometric features,
without disrupting the spatial structure of the point cloud.
Moreover, the object of GeoColor Superpoint Matching is
low-noise superpoints, further achieving geo-color fusion,
thereby greatly diluting the effect of noise.

To verify the noise resistance of ColorPCR, we add noise
with different standard deviations to the color of dense
points (with RGB values constrained within [0, 1]). Exper-
imental results show that ColorPCR’s registration perfor-
mance is quite stable under different noise influences.

In the first experiment, minuscule noise of normal distri-
bution is added to the dense points, and the new RGB values
falling below 0 or exceeding 1 were truncated, employing
the color values with superimposed noise as the input for
ColorPCR (Tab. 2). Under such circumstances, the perfor-
mance of ColorPCR is quite stable. Only when the standard
deviation of the noise escalates to 0.05, does the perfor-
mance of the registration experience a marginal downturn.

Then we modify the method of noise addition: a certain
proportion of points are randomly selected, their color val-
ues are randomly assigned within the range of [0, 1], and
the newly generated dense points are then fed into Color-
PCR for the execution of registration (Tab. 3). The registra-
tion performance of the network remains remarkably stable
when noise points are relatively scarce. It is only when a
substantial quantity of noise points are chosen (e.g., 10%),
that the registration efficacy experiences a slight decline.

The two types of noise described above emulate the in-
fluence of factors such as lighting conditions on the overall



Noise C3DM C3DLM
PIR FMR IR RR PIR FMR IR RR

Without noise 89.2 99.6 73.5 96.4 63.1 96.5 51.0 88.1
Noise-0.0001 89.2 99.6 73.4 96.5 63.0 96.8 51.0 87.5
Noise-0.0005 89.2 99.6 73.4 96.2 63.0 96.8 51.0 87.9
Noise-0.001 89.2 99.6 73.3 96.2 63.0 96.8 50.9 87.8
Noise-0.002 89.2 99.5 73.3 96.6 63.0 97.0 50.9 87.2
Noise-0.005 89.2 99.5 73.1 96.2 62.9 96.8 50.6 88.2
Noise-0.01 89.0 99.6 72.6 96.2 62.5 95.9 50.0 87.4
Noise-0.05 87.6 99.2 68.1 94.4 58.2 93.1 43.7 80.9
Noise-0.1 85.3 99.3 63.6 92.8 52.9 88.9 37.7 73.8

Table 2. The registration results of ColorPCR under different lev-
els of noise.

Noise C3DM C3DLM
PIR FMR IR RR PIR FMR IR RR

Without noise 89.2 99.6 73.5 96.4 63.1 96.5 51.0 88.1
Noise-0.1% 89.2 99.6 73.3 97.0 63.0 96.6 50.8 88.4
Noise-0.2% 89.1 99.5 73.2 96.7 62.9 96.7 50.7 87.9
Noise-0.5% 89.1 99.6 72.7 97.1 62.7 96.7 50.2 87.4
Noise-1.0% 88.8 99.4 72.1 95.7 62.3 96.4 49.4 87.5
Noise-2.0% 88.7 89.5 71.0 96.7 61.9 96.1 48.4 86.4
Noise-5.0% 88.3 99.5 69.0 96.4 60.4 95.1 45.8 84.2
Noise-10.0% 87.4 99.0 66.6 95.2 58.5 94.7 43.0 81.7
Noise-20.0% 86.1 99.4 63.6 92.3 55.6 93.5 39.6 77.7

Table 3. The registration outcome of ColorPCR subsequent to the
random attribution of a certain proportion of dense points colors.

color collection of the point cloud, as well as the occur-
rence of individual point cloud color inaccuracies due to
low device precision. ColorPCR demonstrates exceptional
stability under these two types of noise, accomplishing ro-
bust point cloud registration.

D.3. Running Time

The primary constraints on the registration time for the
majority of preceding methodologies are the procurement
of priors and the convergence of RANSAC. The registration
procedure of ColorPCR necessitates no priors and employs
a local-global registration strategy as an alternative to the
more time-intensive RANSAC, resulting in a quicker exe-
cution time. Preceding methodologies, such as GeoTrans-
former [8], have considered both execution time and regis-
tration precision, introducing a robust registration network.
Tab. 4 juxtaposes the RR and execution time of ColorPCR
and GeoTransformer. Both methodologies are identical dur-
ing the transformation estimation phase, hence the table
solely contrasts the execution time of the backbone net-
work, which extracts hierarchical point features, and the
transformer network, which extracts superpoint features. As
evidenced by the data in the table, the procedure of color
extraction by CEFE barely augments the operational time.
The GeoColor Superpoint Matching process, which entails
∆H computation, marginally elevates the calculation time.
Despite the nearly equivalent total time, ColorPCR has ac-

Model RR (%) Time (s)
C3DM C3DLM Points Superpoints Total

GeoTransformer [8] 91.5 74.0 0.027 0.052 0.079
ColorPCR 96.5 88.3 0.027 0.092 0.119

Table 4. The registration recall and running time of ColorPCR and
GeoTransformer. Within the table, Points Time denotes the du-
ration required for the extraction of hierarchical point features,
whereas Superpoints Time signifies the operational time of the
transformer architecture that further extracts superpoint features.

complished a substantial enhancement in RR.

D.4. Detailed Results With Different Overlaps

We have conducted a detailed validation of the Feature
Matching Recall (FMR), Inlier Ratio (IR), and Registration
Recall (RR) of ColorPCR and other geo-only methods un-
der various low overlaps, with the data listed in Tab. 5. Col-
orPCR achieves the best results in all metrics listed in the
table and realizes a breakthrough improvement under ex-
tremely low overlap. In the challenging registration envi-
ronment with an overlap of 0.1-0.15, ColorPCR achieves
the highest FMR of 94.1%, IR of 54.3%, and RR of 78.2%,
while the best results of other geo-only methods are only
77.6% for FMR, 43.1% for IR, and 55.1% for RR. Col-
orPCR, by utilizing color information to guide the regis-
tration process, obtains precise hierarchical point-wise fea-
tures, thereby identifying points in the overlap areas and
achieving a higher IR. Moreover, it achieved relatively ac-
curate registration in most cases of the dataset, resulting in
higher FMR and RR.

D.5. Hyperparameter Ablation

We adjust the hyperparameters introduced in ColorPCR.
For the convenience of parameter effect verification, we use
CEFE (1) for the experiment and adjust the parameter σc

for color enhancement in the first level. The experimental
results are shown in Tab. 6. The performance of ColorPCR
is very stable under different σc, so in the experiments de-
scribed in the main text, we choose the most intuitive hy-
perparameter σc = 1.00 for color enhancement. In addi-
tion, the embedding hyperparameter σHD introduced in the
GeoColor Superpoint Matching Module is set to 0.1 in our
experiments.

E. Visualizations
E.1. Qualitative Results

We provide additional qualitative results on the
Color3DLoMatch dataset in Fig. 2, where we present vi-
sualizations of the input, ground truth, ColorPCR, and Geo-
Transformer [8] results. Both GeoTransformer and our Col-
orPCR utilize LGR for registration. As mentioned in Geo-



#Samples 0.1-0.15 0.15-0.2 0.2-0.25 0.25-0.3
5000 2500 1000 500 250 5000 2500 1000 500 250 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%)↑

Predator [3] 59.1 59.9 60.3 60.7 60.0 73.9 75.3 73.5 73.0 69.8 81.2 80.9 80.7 80.5 81.3 88.8 89.1 89.5 88.5 88.4
Cofinet [13] 69.6 69.5 69.2 67.8 68.3 83.5 83.5 84.5 84.6 83.2 91.9 91.0 90.8 91.1 89.8 95.5 95.5 95.5 95.5 95.2
GeoTransformer [8] 76.0 76.1 77.6 76.5 76.1 89.1 89.2 89.0 88.5 88.1 92.6 92.8 92.8 92.6 92.3 95.4 95.5 95.2 96.2 95.1
ColorPCR (ours) 92.7 92.7 94.1 93.5 93.0 96.8 97.8 97.1 97.2 96.8 99.4 99.4 99.5 99.4 99.3 97.5 97.5 97.5 97.5 97.6

Inlier Ratio (%)↑

Predator [3] 13.5 14.7 15.2 15.1 14.0 21.0 22.5 22.7 22.1 20.9 25.6 26.7 27.3 26.2 24.9 32.3 33.6 34.3 33.1 31.0
Cofinet [13] 16.4 17.7 18.3 18.6 18.7 24.4 25.8 26.5 26.9 26.8 28.0 29.6 30.4 30.8 30.8 33.4 35.1 35.9 36.2 36.6
GeoTransformer [8] 29.2 33.4 39.1 41.5 43.1 42.9 48.6 54.7 57.4 59.1 48.6 55.1 61.3 64.5 65.4 55.8 62.7 69.0 71.7 73.7
ColorPCR (ours) 38.8 42.5 49.1 52.1 54.3 49.6 57.8 61.7 64.7 66.8 54.7 60.4 67.0 69.8 72.1 60.2 66.0 72.2 75.0 77.0

Registration Recall (%)↑

Predator [3] 38.2 38.4 41.9 42.4 35.7 52.0 54.7 54.8 53.3 49.1 68.9 68.2 66.6 61.7 59.8 75.5 75.3 74.9 76.2 72.0
Cofinet [13] 47.1 49.6 50.4 47.7 46.0 65.8 64.9 65.2 66.6 63.8 72.6 73.8 72.3 70.6 70.8 81.6 83.0 83.1 82.9 81.1
GeoTransformer [8] 50.6 55.1 53.4 54.1 54.5 72.3 70.0 72.4 69.9 68.9 75.4 74.7 76.3 75.3 75.0 82.9 83.9 82.5 80.7 83.1
ColorPCR (ours) 76.2 77.9 78.2 75.9 74.5 85.3 87.8 87.4 85.2 84.9 95.0 93.4 95.4 92.1 92.8 94.3 93.1 93.8 93.2 93.2

Table 5. A detailed comparison of the registration effects of ColorPCR and geo-only methods under different overlaps. #Samples in the
table represents the number of correspondences selected by RANSAC.

σc
C3DM C3DLM

PIR FMR IR RR PIR FMR IR RR

1.25 88.9 99.6 73.0 97.4 62.2 95.6 50.2 86.4
2.00 88.7 99.2 73.6 95.8 61.9 96.0 50.8 85.7
5.00 88.9 99.6 74.3 95.2 60.5 95.8 49.6 85.3
1.00 87.9 99.6 72.1 97.3 60.6 96.2 49.2 87.1

Table 6. Ablation experiments on the hyperparameter σc, which is
used for color enhancement in CEFE.

Transformer, it severely fails in challenging registration sce-
narios with extremely low overlap and geometric distinc-
tiveness. Due to the low geometric uniqueness of the over-
lapping area, it cannot effectively identify the points in the
overlapping area, leading to misalignment. However, Col-
orPCR, guided by color information, takes advantage of
both the geometric shape and color features of the over-
lapping area, thereby successfully achieving registration in
such challenging scenarios.

E.2. Real World Registration

ColorPCR achieves high-precision registration under
challenging scenarios, thus performing well in difficult reg-
istration situations in the real world. To validate this conclu-
sion, we sample some color point clouds from real scenes
using the Intel RealSense d455 RGBD camera and register
them. The specific registration results are shown in Fig. 3,
where we present two input point clouds and the registra-
tion results of ColorPCR. The colorless point clouds are
presented to distinguish two point clouds.
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(a) input (b) colorized ground truth (c) ground truth (d) GeoTransformer (e) ColorPCR

Figure 2. Registration results on Color3DMatch and Color3DLoMatch.



(a) point cloud one (b) point cloud two (c) input (d) ColorPCR (e) ColorPCR

Figure 3. Real world registration results of ColorPCR. The colorless point clouds are presented to distinguish two point clouds.


