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In the supplementary material, we (1) elaborate on our
cost analysis in the main paper (Section A); (2) com-
pare SnAG to latest methods with more advanced learning
paradigms (Section B); (3) analyze the effect of input snip-
pet length in training on model performance (Section C);
(4) conduct error analysis of our results in comparison to
baseline results (Section D); (5) describe additional imple-
mentation details (Section E); and (6) discuss the limitations
and future directions of our work (Section F). We hope that
this document will complement our main paper.

For sections, figures, tables, and equations, we use num-
bers (e.g., Sec. 1) to refer to the main paper and capital let-
ters (e.g., Sec. A) to refer to this supplement.

A. Cost Analysis

In Section 3.2 of the main paper, we have shown that late
fusion, under the assumption of C(FL) ≪ C(g) + C(h)
and C(g) ≪ C(h), allows a maximum of N times speedup
in theory at inference time. Here N is the number of text
queries per video, C(g) and C(h) denotes the respective cost
of video and text encoding, and C(FL) combines the cost of
cross-modal fusion and moment decoding.

In practice, for any realistic instantiation of FL, like our
SnAG, the cost of cross-modal fusion and moment decod-
ing C(FL) can not be ignored. This partially breaks our
assumption of C(FL) ≪ C(g) + C(h). To account for non-
trivial cost C(FL), we denote C(FL) = α(C(g) + C(h)),
where the positive coefficient α reflects the cost of FL rel-
ative to the total cost of both encoders g and h. For late
fusion, α is typically in the range of (0, 1). Following Sec-
tion 3.2, we have

Rinf =
C(inference with early fusion)
C(inference with late fusion)

(A)

=
MN C(FL) +MN C(g) +MN C(h)
MN C(FL) +M C(g) +N C(h)

(B)

=
MN(1 + α)

MNα+MRg/(g+h) +N(1−Rg/(g+h))
(C)

≈ 1 + α
1
N + α

→

{
N, α → 0

1 + 1
α , N → ∞

, (D)

* indicates equal contribution

where the approximation in Equation D is a consequence of

Rg/(g+h) = C(g)/(C(g) + C(h)) C(g)≫C(h)−−−−−−−→ 1.
Substituting N with Bq (the number of queries drawn

for each training snippet), we can derive similar efficiency
result for our video-centric training scheme (Section 3.3):

Rtrain ≈ 1 + α
1
Bq

+ α
→

{
Bq, α → 0

1 + 1
α , Bq → ∞

. (E)

For long-form video grounding (i.e., large N and Bq),
our extended analysis indicates that late fusion remains
highly efficient when α is reasonably small. For example, a
late-fusion model with α → 1 can in theory bring a consid-
erable 2× cost reduction in both training and inference rela-
tive to early fusion. This is precisely the case with SnAG, as
Figure 5(a) of the main paper shows that SnAG’s encoders
account for ∼50% of the total computation.

Importantly, our empirical findings confirms this esti-
mate. Figure 5(b, d) of the main paper shows that video-
centric training and inference of SnAG on MAD is ∼50%
more efficient in terms of runtime and GPU memory. On
TACoS and Ego4D, the saving in training is less prominent
as we found that smaller Bq leads to slightly better results,
yet the substantial reduction in inference time echoes our
cost analysis and demonstrates the efficiency of SnAG.

B. Additional Comparisons

We further compare SnAG to latest approaches that (1)
consume additional input modalities (e.g., audio), (2) are
trained end to end on raw videos (as opposed to using frozen
video backbones); or (3) perform large-scale, multi-task
pre-training. We note that these are not fair comparisons
and put SnAG at a disadvantage. This comparative analy-
sis, however, further highlights the strength of SnAG.

Comparison with Barrios et al. [1]. Barrios et al. [1] has
demonstrated a method for long-form video grounding via
Multimodal Guidance. The guidance model takes audio in
addition to video and text queries as input, and produces a
score to condition an existing grounding model.

Table A compares the performance of existing models
with Multimodal Guidance and SnAG. While the audio in-
put provides additional cues to facilitate accurate moment
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Model R@1 R@5 R@10 R@50

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

† CLIP [17] 9.30 4.65 2.16 18.96 13.06 7.40 24.30 17.73 11.09 39.79 32.23 23.21
† VLG-Net [21] 5.60 4.28 2.48 16.07 13.14 8.78 23.64 19.86 13.72 45.35 39.77 30.22
† Moment-DETR [10] 5.07 3.82 2.39 16.30 12.60 7.90 24.79 19.43 12.06 50.06 40.52 24.87
SnAG 10.28 8.46 5.55 24.42 20.60 13.75 32.23 27.50 19.00 52.28 46.68 35.24

(a) Results on MAD [20].

Model mean R@1 mean R@5

† Moment-DETR [10] 7.28 22.14
† VSL-Net [23] 11.90 24.06
SnAG (EgoVLP) 15.59 38.40

(b) Results on Ego4D-NLQ [8].

Table A. Comparison with Multimodal Guidance [6]. SnAG does not take audio as input, yet outperforms existing models with Multi-
modal Guidance (†) using audio. Mean R@{1,5} are computed over tIoU={0.1,0.3,0.5}. For SnAG, we report the better results between
video-centric and query-centric training.

Model R@1 R@5

0.3 0.5 0.3 0.5

TCSF 49.82 38.53 68.60 59.89
SnAG (C3D) 56.44 44.86 81.15 70.66

(a) Results on TACoS [18].

Model R@1 R@5

0.5 0.7 0.5 0.7

TCSF 53.85 37.20 90.86 58.95
SnAG (I3D) 65.13 46.26 92.80 71.94

(b) Results on Charades-STA [19].

Model R@1 R@5

0.3 0.5 0.3 0.5

TCSF 66.87 48.38 88.75 80.24
SnAG (C3D) 63.58 48.55 89.55 81.71

(c) Results on ActivityNet-Captions [9].

Table B. Comparison with TCSF [6]. SnAG outperforms TCSF
despite using frozen video features. For SnAG, we report the better
results between video-centric and query-centric training.

localization, it does not fully close the gap between the ex-
isting models and SnAG. SnAG is 3.07 absolute percentage
points higher in R@1, tIoU=0.5 on MAD, and 1.67 points
higher in mean R@1 on Ego4D. We hypothesize that Multi-
modal Guidance will also boost the performance of SnAG.
Comparison with TCSF [6]. TCSF takes a compressed
video and obtains features from keyframes without explic-
itly decoding the video. Importantly, the feature extractor is
jointly trained with the grounding model. Joint training has

Model R@1

0.3 0.5 avg

UniVTG 7.28 3.95 5.62
UniVTG w/ PT 11.74 7.54 9.64
SnAG (EgoVLP) 15.87 11.26 13.57

(a) Results on Ego4D-NLQ [8].

Model R@1

0.3 0.5 avg

UniVTG 51.44 34.97 43.21
UniVTG w/ PT 56.11 43.44 49.78
SnAG (C3D) 56.44 44.86 50.65

(b) Results on TACoS [18].

Model R@1

0.5 0.7 avg

UniVTG 58.01 35.65 46.83
UniVTG w/ PT 60.19 38.55 49.27
SnAG (I3D) 65.13 46.26 55.70

(c) Results on Charades-STA [19].

Table C. Comparison with UniVTG [11]. SnAG consistently
outperforms UniVTG despite being simpler and learning from in-
dividual datasets without multi-task pre-training. w/ PT means
fine-tuning after pre-training. For SnAG, we report the better re-
sults between video-centric and query-centric training.

significant benefit as it allows video features to adapt to the
grounding task through end-to-end learning.

Table B compares the performance of TCSF and SnAG.
Despite the extra capacity to learn more powerful features,
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Figure A. Ablations on snippet length in training. On both
TACoS (a) and MAD (b), SnAG delivers stronger test accuracy
when trained on snippets of increased length.

TCSF lags behind SnAG by a significant margin. Consider
the R@1, tIoU=0.5 scores — SnAG outperforms TCSF by
6.33 absolute percentage points on TACoS, and 11.28 abso-
lute percentage points on Charades. The two methods are
on par on ActivityNet (48.38 vs. 48.55).

Comparison with UniVTG [11]. UniVTG pools large-
scale datasets and annotations from multiple video under-
standing tasks and learns a unified grounding model through
multi-task pre-training. The pre-trained model supports
fine-tuning and zero-shot inference on the training tasks, in-
cluding temporal sentence grounding.

Table C compares the performance of UniVTG and
SnAG. While UniVTG is capable of learning from diverse
data and supervision signals, its performance lags behind
SnAG, despite using stronger SlowFast [7] and CLIP [17]
features. We again consider the R@1, tIoU=0.5 scores —
SnAG achieves 11.26% on Ego4D, 44.85% on TACoS, and
64.62% on Charades, outperforming UniVTG by 3.72, 1.41
and 4.43 absolute percentage points, respectively.

C. Effect of Snippet Length

We conduct ablation studies on MAD and TACoS to under-
stand the impact of snippet length in training.

Experiment setting. On TACoS, we emulate feature sub-
sampling in previous methods [12, 21, 24] by resizing in-
put video features to a uniform length of 128, 256 and 512,
and compare to training using full-sized features (capped
at a length of 2304). On MAD, we are able to vary snip-
pet length from 256 (1 minute) to 8192 (1 hour) thanks to
SnAG’s scalable model design and training scheme. We re-
port R@1 and R@5 at tIoU=0.5 for both datasets.

Results. Figure A presents our results. Training on longer
snippets constantly leads to higher test accuracy for both
datasets. On MAD, R@1, tIoU=0.5 grows by a significant
73% (from 3.31% to 5.73%) even though all moments are
short (4.1 seconds on average) and can be fully covered by
the shortest snippet length of 256. We conjecture that neg-
ative moments that are distant in time can provide strong

learning signal to models like SnAG, which is capable of
processing long-form video inputs.

D. Error Analysis

To better understand our results, we present an error analy-
sis and compare our results with those from strong baselines
of VLG-Net [21] and 2D-TAN [24]. This analysis is con-
ducted on the test split of TACoS.

Experiment setting. In our first experiment, we divide the
ground-truth moments into five bins according to their cov-
erage (i.e., moment length relative to full video length): Ex-
tra Small (XS: (0, 0.02]), Small (S: (0.02, 0.04]), Medium
(M: (0.04, 0.08]), Large (L: (0.08, 0.16]) and Extra Large
(XL: (0.16, 1]). In our second experiment, we divide the
videos into five bins based on their duration in seconds: Ex-
tra Small (XS: (0, 125]), Small (S: (125, 250]), Medium
(M: (250, 500]), Large (L: (500, 750]), Extra Large (XL:
(750, ∞)). We report mean R@1 averaged over the tIoU
thresholds of 0.3 and 0.5 for each bin.

Results. Figure B presents our results. While our model
consistently outperforms the baselines by a significant mar-
gin across all conditions, the relative percentage of improve-
ment is especially large on low-coverage moments (XS and
S) and long videos (L and XL). Note that both VLG-Net
and 2D-TAN have a complexity of O(T 2) and thus need to
sub-sample input video features to a small length (256 for
VLG-Net and 128 for 2D-TAN) to reduce their computa-
tional cost. Intuitively, feature sub-sampling drops detailed
information about event dynamics and makes precise local-
ization of short moments more challenging. This becomes
especially problematic for long videos as the drop rate can
be extremely large (e.g., 10× for XL videos). Our results
thus suggest that the ability to scale up to long videos is
critical for enhancing localization accuracy.

E. Implementation Details

We now present the implementation details of SnAG. Ta-
ble D summarizes key hyper-parameters we used in our ex-
periments for feature extraction, training and inference.

Video features. For TACoS [18], Charades-STA [19] and
ActivityNet-Captions [9], we extract clip-level video fea-
tures using C3D network pre-trained on Sports-1M [22],
following prior approaches (e.g., [12, 21, 24]). We decode
TACoS videos at a frame rate of 29.4 frames per second
(FPS) and compute the 4096-dimensional, post-ReLU acti-
vations of fc6 layer as features using non-overlapping clips
of 16 frames. For Charades-STA, we use the RGB frames
provided on the official website . We use clips of 16 frames
with a stride of 4 frames (i.e., 75% overlap), and compute
the 4096-dimensional, post-ReLU activations of fc7 layer as
features. We use official C3D features for ActivityNet . For
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Figure B. Error analysis on TACoS. Our model consistently outperforms VLG-Net [21] and 2D-TAN [24] on moments with low (XS) to
high (XL) coverage and videos with short (XS) to long (XL) duration. It is especially strong on low-coverage moments (a) and long videos
(b) thanks to its scalability with respect to video duration.

Dataset
Video
FPS

Video
Feature

Clip
Size Stride

Snippet
Length

Video
Dim

Win
Size

Video
Layers

Text
Feature

Text
Dim

Text
Layers

Batch
Size Bq lr Epochs

MAD 5 CLIP 1 1 4096 512 17 9 CLIP 512 1 32 8 1e-4 8

Ego4D-NLQ 30 SlowFast 32 16 2304 512 19 8 BERT 128 1 2 2 1e-4 10
EgoVLP 384 EgoVLP 768 2 2 7

TACoS 29.4 C3D 16 16 2304 128 19 8 GloVe 128 5 16 4 1e-3 15

Charades-STA 24 C3D 16 4 256 256 5 7 GloVe 128 5 16 4 1e-3 10I3D 16 4
ANet-Captions varying C3D 16 8 256 128 5 7 GloVe 128 5 16 2 1e-3 15

Table D. Implementation Details. We list key parameters for video encoding (left), text encoding (middle), and model training (right).

fair comparison with baselines, we additionally extract two-
stream I3D features for Charades-STA from I3D network
pre-trained on Kinetics [3] using clips of 16 frames with
a stride of 4 frames. For Ego4D-NLQ [8], we use official
SlowFast features [7] as well as EgoVLP features [16] , both
extracted from 30 FPS videos using clips of 32 frames with
a stride of 16 frames (i.e., 50% overlap). For MAD [20], we
use the official CLIP features [17] extracted at 5 FPS .

Textual features. We use GloVe word embeddings [15]
with 6B vocabulary for TACoS, Charades-STA and
ActivityNet-Captions. For Ego4D-NLQ, we use last-layer
token embeddings (CLS token excluded) from BERT [5] or
EgoVLP text encoder together with SlowFast or EgoVLP
video features. For MAD, we use official CLIP token em-
beddings (SOT and EOT tokens excluded) from the last
layer of text encoder.

Network architecture. For the video encoder, we apply
a linear projection followed by two 1D convolutional lay-
ers with kernel size 3 on the input features prior to build-
ing the multi-scale video representation. The embedding
dimension, attention window size and number of scales in
the multi-scale Transformer network differ by dataset (see
Table D for a summary). For the text encoder, we apply a
single Transformer layer for MAD and Ego4D-NLQ, and 5
layers for the other datasets. We use 4 attention heads for
all Transformer layers in the model. The classification and

regression heads each contains two 1D convolutional layers
with kernel size 3.

Training details. We randomly sample video snippets with
a maximum sequence length of 4096, 2304 and 2304 for
MAD, Ego4D-NLQ and TACoS, respectively. We resize all
videos to a uniform length of 256 for Charades-STA and
ActivityNet. We use the AdamW optimizer [13] with the
default beta values of (0.9, 0.999) and a weight decay of
0.05. Mini-batch size (including Bq for video-centric train-
ing), learning rate and number of training epochs can be
found in Table D. We maintain an exponential moving av-
erage (EMA) of model parameters over the entire course of
training with a momentum of 0.999 and use the EMA ver-
sion of the trained model for inference.

Inference details. Following our video-centric inference
protocol, we first feed full videos into our model to com-
pute the shared video representation, and then input text
queries and fuse them with the video representation. Mo-
ments are then decoded from the fused representation and
further merged using SoftNMS [2].

F. Discussion and Limitation
As we mentioned in Section 3.4 of the main paper, the de-
sign of SnAG is one of many possible instantiations of our
analysis. As long as late fusion and video-centric training
is employed, alternative designs can be considered, includ-



ing two-stage proposal-based methods or DETR-alike mod-
els. We anticipate that exploration of this design space may
point to an interesting future avenue.

Similar to prior methods, SnAG’s performance heavily
depends on the quality of pre-extracted video and sentence
features. These features are from networks pre-trained on a
related yet different task (e.g., action recognition or image-
text matching) and may not be optimal for video grounding.
Training of SnAG further requires moment and sentence an-
notations that are expensive and difficult to acquire. End-to-
end training [4] of SnAG with less human annotation [14]
is thus a promising future direction.
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