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Supplementary Material

In this supplement, we describe (1) The implementation

details of our reconstruction pipeline (Section A); (2) a sen-

sitivity analysis to understand the robustness of our method

w.r.t. imaging parameters (Section B); (3) A discussion of

the difficulty of point cloud surface reconstruction (Sec-

tion C); (4) additional qualitative results on simulated data

and real world captures (Section D); and (5) further discus-

sion of our work (Section E). We also include three short

videos, which provide animated 360◦ views of qualitative

reconstruction results. The videos can also be viewed on

the project web page: https://cpsiff.github.io/

towards_3d_vision/.

For sections, figures and equations, we use numbers

(e.g., Sec. 1) to refer to the main paper and capital letters

(e.g., Sec. A) to refer to this supplement.

A. Implementation Details

For both simulated and real world experiments, we use an

8-layer MLP with 256 hidden units as our SDF, fθ, and ini-

tialize it as a sphere, centered at the origin with radius 0.3m,

using geometric initialization [56]. For each transient, we

sample 256 rays ω over Ω and sample 256 points per ray.

We set λEikonal to 0.1 across all experiments and set λTV

to 0 and 0.01 respectively for the simulated and real-world

experiments. We train fθ for 300K steps using Adam [60]

with a mini-batch size 2, a learning rate 0.0005, and cosine

decay. The learned SDFs are converted to meshes using

Marching Cubes [61].

B. Sensitivity Analysis

We perform extensive experiments to understand the robust-

ness of our method in comparison to baselines under vary-

ing sensor parameters in simulation. All experiments are

based on the Bunny scene and the parameters are varied

one at a time while other parameters remain fixed at the

base condition (as described in Section 4 of the main pa-

per). To ensure strong baselines for every sensor configura-

tion, we calibrate the thresholds tp and ts for the projection

(threshold) and space carving baselines respectively per re-

construction. We perform a brute force search over possi-

ble thresholds and report the best Chamfer achieved. As

this amounts to calibrating on the test set, the numbers re-

ported represent the best possible performance of the base-

line methods on the given data. The results of this sensitiv-

ity analysis are presented in Figure A. In what follows we

discuss some of the main findings.

Sensor Placement. We study two key parameters that con-

trol sensor placement: the number of views and the mini-

mum elevation angle at which the sensors are placed. Our

method consistently outperforms all baselines in Chamfer

distance by an order of magnitude across a broad range of

parameter choices. In particular, our method readily sup-

ports as few as 128 views above a considerably large ele-

vation angle of 30◦ without harming reconstruction quality.

This robust gain in performance confirms that our method

takes advantage of broad-band signal in transients not ex-

ploited by the baseline methods.

Temporal Resolution. Our system takes advantage of the

temporal information in transient histograms, and therefore

benefits when that information is present at a high resolu-

tion. Because of this, our method outperforms baselines by

a very wide margin at a small bin size, but the margin van-

ishes as bins become wider than 2cm (equivalently 66ps),
because decomposing the temporal signal becomes imprac-

tical beyond this limit. Fortunately, today’s commodity

SPADs operate at a smaller bin size (∼ 40ps). Baseline

methods show no performance gain at small bin sizes, as

they do not take advantage of the temporal resolution.

Angular Resolution. Our system resolves spatial reso-

lution from wide-FoV sensors by taking advantage of the

time dimension. In this regime, the optimal sensor field-

of-view size is not obvious: a smaller FoV means more

highly constrained geometry, as each histogram images a

smaller region, but too small of a field-of-view means a

lack of coverage and under-constrained geometry. We find

that an angular resolution in the 30◦ to 60◦ range is op-

timal for reconstructing 3D geometry with our method on

the bunny scene. Reprojection based methods benefit more

from a smaller field-of-view, while space carving performs

best with a wider field-of-view so that space is sufficiently

carved away. In every case, our method outperforms base-

lines by a wide margin.

Signal-to-noise ratio (SNR). We consider three parameters

that jointly impact SNR: illumination power, ambient flux,

and number of illumination cycles. Our method again out-

performs all baselines by a significant margin across all test

conditions. Notably, the baselines fail or perform consider-

ably worse under high ambient flux, as signal photons are

blocked by background photons due to pile-up. By contrast,

our method is robust against a broad range of ambient flux

levels, as we model the effects of ambient flux directly.

C. Point Cloud Surface Reconstruction

We do not apply surface reconstruction to the point clouds

computed by reprojection because off-the-shelf reconstruc-

https://cpsiff.github.io/towards_3d_vision/
https://cpsiff.github.io/towards_3d_vision/


16 32 64 12
8

25
6

(a) Number of Views

1

10

100

C
ha

m
fe

r 
(m

m
)

0 15 30 45 60

(b) Minimum Elevation (°)

1

10

100

1.2
5 2.5 5 10 20 40

(c) Histogram Bin Size (mm)

1

10

100

1 5 10 15 30 45 60 90

(d) Sensor FoV (°)

1

10

100

0.2 0.5 1 2 5 10 20 50

(e) Illumination Power (ϕscale)

1

10

100

C
ha

m
fe

r 
(m

m
)

0.0
00

1

0.0
00

2

0.0
00

5
0.0

01
0.0

02
0.0

05 0.0
1

0.0
2

(f) Ambient Flux (ϕbkgd)

1

10

100

20
0

50
0

10
00

20
00

50
00

10
00

0
20

00
0

50
00

0

(g) Number of Cycles

1

10

100

Rerojection (Peak)
Rerojection (Threshold)
Space Carving
Ours

Figure A. Sensitivity analysis of our method compared to baselines across a range of imaging parameters. In almost every case,

our method outperforms baseline methods on Chamfer distance. Missing datapoint in (d) indicates that our method failed to converge.

Illumination power (e) is unit-less as it also absorbs factors like quantum efficiency and does not map directly to any real world parameter.

Reference Point Cloud Poisson Ball-Pivoting

Figure B. Off-the-shelf algorithms for surface reconstruction

(Poisson Surface Reconstruction [59] and The Ball-Pivoting Al-

gorithm [57]) do not perform well on point clouds generated by

reprojection.

tion techniques do not perform reliably on the generated

point clouds, as shown in Figure B. Additionally, calculat-

ing Chamfer distance to the computed point cloud ensures

that we are capturing the efficacy of reprojection rather than

a given surface reconstruction method. We include one-way

reconstruction to ground truth Chamfer distance in Table 2

to provide a metric which does not penalize the sparsity of

point clouds produced by reprojection.

D. Additional Qualitative Results

More reconstruction results. We present additional qual-

itative results on simulated data (Figure D) and real-world

captures (Figure C). These results were omitted from the

main paper due to lack of space.

Surface normal visualization. Moving beyond the 3D

shapes, we further examine the surface normal of our re-

constructed 3D objects. The surface normal of a point x on

the reconstructed mesh is estimated as

ñx =
∇x(fθ(PE(x)))

∥∇x(fθ(PE(x)))∥
, (A)

where fθ is the learned SDF and PE denotes the positional

encoding function. The error ex w.r.t. the ground-truth nor-

mal nx is given by

ex = |⟨nx, ñx⟩|. (B)

Surface normal results. We provide visualizations of sur-

face normals for simulated data in Figure E. Our method

can successfully recover smoothly varying normals. Error

typically occurs at edges and depth discontinuities with fast-

changing normals. We hypothesize that sensors with higher

temporal and spatial resolution are needed for more accu-

rate surface normal reconstruction.

E. Further Discussion

Beyond Lambertian objects. Our method assumes a spa-

tially uniform Lambertian BRDF, but in practice can effec-

tively reconstruct objects with spatially varying albedo and

slightly glossy appearance (e.g. the spray bottle). In theory,

our method can easily be adapted to incorporate a paramet-

ric lighting model. Recovery of the parameters of such a

model are likely possible because, by sharing information

among many observations, the BRDF is effectively sampled

at many incident and exitant angles. An intriguing direction

for future work is investigating which BRDF parameteri-

zations can be recovered with our imaging setup, and the

effect of the reflectance model on reconstruction quality.

We suspect that a non-parametric NeRF-like BRDF would

not be suitable as it does not sufficiently constrain the op-

timization. A parametric lighting model, e.g. Phong [58]

or Oren-Nayar [64] may appropriately constrain the opti-



mization while allowing the model to learn a more accurate

scene representation.

Runtime efficiency. Our method takes on the order of hours

to reconstruct a scene, making it unsuitable for real-time

applications in its current state. Future work should in-

vestigate ways to speed up forward rendering and model

training. Improved importance sampling would likely yield

modest improvements in convergence time. Another op-

tion is to render only summary statistics of the histogram

(e.g. mean, peak locations or widths) rather than the entire

histogram, which would likely be faster to render at the ex-

pense of yielding a lower-quality reconstruction.

Sensor pose. In this work, we used an industrial robot

arm to gather posed sensor measurements. We chose this

modality as it is guaranteed to provide highly accurate sen-

sor poses, and allows control over precise sensor place-

ment. For applications like wearable computing and dis-

tributed sensing for robotics, camera poses might be pre-

calibrated and remain fixed relative to each other during op-

eration. Alternatively, the low-cost single-photon camera

could be combined with a sensor-based localization system

(e.g., an IMU based [66] or a camera based [63] system) to

recover camera pose, a setup which is standard in related

works [62, 65]. Such a capture setup would allow capture

of more organic and large scale scenes, which more closely

mimic the potential use cases of the sensor (e.g. on mobile

robots and drones).

Comparison to other 3D imaging modalities. Our work

provides a low-cost 3D imaging system using single-photon

cameras. We provide detailed comparisons between our

method and baseline methods, but do not compare our re-

constructions to those gathered from other 3D modalities,

such as continuous wave time-of-flight [3] or LiDAR [21].

Future work should provide a comparison to these other

modalities to provide insights into the niche (in terms of

accuracy, size, power, etc.) filled by each.

Comparison to a NeRF with a miniature RGB cam-

era. Using multiple calibrated RGB cameras, NeRF-like

approaches can leverage photometric cues (e.g. correspon-

dence and shading) to recover 3D shapes from a distributed

set of cameras. Conceptually, NeRF-like approaches fall

short under non-ideal lighting (e.g. low-light) or insuffi-

cient correspondence (e.g. textureless objects), while our

method with active lighting and depth remains effective.

With sufficient light and distinct texture patterns, NeRF-like

approaches on RGB images will yield a higher quality re-

construction than our method, due to significantly increased

data rates. Without compression, a VGA-resolution image

with 8-bit color channels contains 7Mbits of information,

while an image (i.e., transient histogram) from our sensor

contains 3Kbits of information. With 2400× the informa-

tion per-view, it is not surprising that NeRF with RGB cam-

eras could outperform our method given the same number

of input views. Practically, existing low-cost RGB cam-

eras are larger and less power efficient than the SPAD sen-

sors that we utilize. While miniature RGB cameras do exist

(e.g., those used for endoscopy), they are >20× the cost of

a SPAD.

Commodity sensors. One challenge for future work is a

lack of hardware support for measurement and use of tran-

sient histograms. Very few low-cost sensors allow access to

transient histograms, and those that do often perform pre-

processing that is proprietary or undocumented. Addition-

ally, most sensors are equipped with very low-bandwidth

I2C interfaces, limiting their effective FPS. We hope that

manufacturers will see value in users having access to tran-

sient histogram data and support the use of this data with

documentation, low-level access, and high-bandwidth inter-

faces in the future.

Ethical concerns. Our work presents a new method for

imaging 3D objects with low-cost single-photon cameras.

We do not anticipate major ethical concerns.
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Figure C. Additional qualitative results on real-world captures. Our method achieves the highest reconstruction quality. Poses in

column two are subsampled by a factor of two for clarity.
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Figure D. Additional qualitative results on simulated data. Our method achieves the highest reconstruction quality. Space carving

captures an envelope of the shape, and may carve away occupied areas in concave shapes (e.g. Armadillo). Reprojection gives a sparse

reconstruction of convex shapes, (e.g. skull, soap, sphere), the scale of which may be distorted due to biases introduced by the wide field-

of-view of the sensor.
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Figure E. Visualizations of surface normals for simulated data. Our method correctly estimates surface normals in flat regions. Error

mainly occurs at edges and depth discontinuities. We hypothesize that sensors with higher temporal and spatial resolution are needed to

detect rapid changes in surface normals.
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