
ConvoFusion: Multi-Modal Conversational Diffusion
for Co-Speech Gesture Synthesis

Supplementary Material

This supplementary document provides a glossary of no-
tations used for method explanation in Sec. 1 and discusses
dataset statistics in Sec. 2. It also provides further details
and analyses of word-excitation guidance in Sec. 3, user
study in Sec. 4 and implementation details in Sec. 5. More-
over, we discuss evaluation metrics in Sec. 6 and training
details for baseline methods in Sec. 7.

1. Glossary for Notations
In Tab. 1, we provide a list of variables used in our
the method and implementation details (Method Sec.
and Sec. 5) for ease of reference.

Variable Description
x Gesture Sequence

xb, xh Body and Hand Motions
C Conditioning Set
z Latent representation

zb, zh Latent Representation for body and hands
⇠b, ⇠h Encoder for body and hands
Db, Dh Decoder for body and hands
x0

b, x0
h Reconstructed motion for body and hands

ẑ Time-aware Latent Representation
✏✓ Predicted noise
f✓ Denoiser neural network
a Audio Signal
⌧ Text Embedding
⌧ 0 Text Embedding for co-participant
s Speaker Identity Token
m Active/Passive Bits for Latent Chunks
wc Modality guidance scale for condition c
S Number of tokens selected for WEG

Gexc Word Excitation Guidance objective
z̃(t) Updated latent after WEG

Table 1. List of variables and their corresponding explanation

2. Dataset Statistics & Discussion
The proposed DND GROUP GESTURE consists of 6 hours
of mocap data comprising of 5 persons in the scene. In total,
we have 2.7M poses along with synchronized, per-person
audio tracks and text transcripts (see Fig. 1). The proposed
dataset addresses a different aspect of human gestures, i.e.

group conversations, which is a sparsely researched set-
ting. This makes our dataset complementary to the existing

Figure 1. Here, we show an over-arching view of our data-
recording setup, where we have five people interacting with each
other, while their motion tracking is recorded via a state-of-the-art
marker-less motion capture system. Each person also has individ-
ual microphones which feed into our audio setup.

monadic gesture datasets like BEAT. We discuss how BEAT
can be used with our framework along with our dataset
in Sec. 7.2.

Finding a capture setting that elicits high density of
meaningful, semantic gestures is indeed a challenging task.
These considerations lead us to capture the participants in
a role-playing setting as they need to describe an imaginary
world to each other, thereby leading to a high density of se-
mantic gestures. The setting also offers a clear intrinsic re-
ward to the participants (of winning the game). As we show
in the video and website, the gestures in our dataset are sim-
ilar to the ones appearing in daily conversation because par-
ticipants are simply discussing a game plan or their next
steps in certain situations using language that is colloquially
used in conversations. Interestingly, the most relevant ges-
tures to the game setting are pointing gestures (participants
usually point to objects on table) which are considered de-
ictic gestures, which happen frequently in normal conversa-
tions. We highlight that the proposed dataset is recorded in
a markerless motion capture setup which it keeps the group
conversation natural without restrictions of a capture suite
or markers, thereby reducing the Observer’s Paradox. Fi-
nally, the subjects are familiar with each other (esp. in the
DnD setting) which further helps in more natural conversa-
tions.

https://vcai.mpi-inf.mpg.de/projects/ConvoFusion/


Generation Process

Denoiser Network

Cross Attention

Cross Attention

Cross Attention

“well-off in England would eat french food and what we now think”

Gaussian 
Smoothing

Attention on 
Spoken Text

 (     ,     )

Word Excitation Guidance 
Objective

Latent Update

Spoken 
Text

Speech 
Audio

Other 
Conditions

Other 
Conditions

Selected words by user: french, now

Figure 2. Algorithm overview of Word Excitation Guidance.

3. On Word Excitation Guidance
In the following sections, we provide details of algorithm
for word-excitation guidance and then perform additional
in-depth analysis on its results.

3.1. Algorithm Details

Algorithm 1 Word-Excitation Guidance

Input: Set of tokens {⌧ i}Si=1

1: Trained Diffusion Model f✓
2: Text Prompt ⌧ 2 C,
3: Diffusion Timesteps T
4: Step size ↵

Output: Denoised Latent ẑ(0)
5: Initialize ẑ(T ) ⇠ N (0, I)
6: for t = T to 0 do
7: , A = f✓(ẑ(t), t, {⌧}) . get attention for text
8: A Softmax(Astart:end) . remove start/end of text
9: A Gaussian(A) . smooth out attentions

10: Gexc =
1
S

PS
i=1(1�max(Ai)) . calculate loss i

11: z̃(t)  ẑ(t) � ↵ ·rẑ(t)Gexc . update latent
12: Perform Iterative refinement [1]
13: ✏(t)✓ , = f✓(z̃(t), t,C) . estimate noise
14: Perform Modality Guidance

15: ẑ(t�1)  SchedulerStep(z̃(t), ✏(t)✓ )
16: end for
17: return ẑ(0)

The process of word-excitation guidance involves mod-
ifying the usual denoising loop by updating the latents at
each timestep. Before updating the latents, we normal-
ize the attention maps by removing attention on the start
and end tokens because each training batch contains text
prompts of different lengths. Moreover, we observe that our

latent diffusion framework assigns high attention to the start
token in text (shown in Figure 4), therefore, we mitigate this
issue by considering the attention on the actual text tokens.
Then we apply Gaussian smoothing over the remaining at-
tention map for stable generation results without any jerks
in motion. This ensures flexibility to focus on a neighbour-
hood of words instead of one word by avoiding gradient up-
dates at only the chosen tokens ignoring its neighbourhood.
Next, we calculate the average for the loss over all the fo-

cus tokens to equally transfer gradients for all the focused
words. Note that, this is different from image-based seman-
tic guidance [1], where Chefer et al. apply smoothing on
attention for only the chosen words/tokens which ignores
the neighbourhood tokens. Moreover, their loss aggrega-
tion only enables gradient transfer for tokens with the low-
est attention instead of all focused tokens by using a max
function instead of mean like us. The complete process is
presented in Algorithm 1.

3.2. Additional Analysis
Joints Affected Per Word. Recall that word-level excita-
tion guidance steers the gesture generation process through
the denoising network to have pronounced gestures at cer-
tain words in the text. It gives a fine mechanism for seman-
tic control over gesture generation. In Fig. 3, we present
an analysis of how this mechanism affects each joint in the
generation. The figure encodes as heatmap the velocity of
each joint in response to the text tokens; the assumption be-
ing that high velocity implies heavier gesturing. We see that
the hand and the arm joints are affected the most at the fo-
cused words. Interestingly, minimal attention is focused on
the lower body; this is expected as most gestures are pre-
dominantly upper-body motions.
Choice Of Words. Specific types of gestures tend to cor-
relate with certain linguistic structures and parts of speech.
Thus, for analysis, we conduct experiments with attention



Figure 3. Heatmap showing the distribution of velocity of all joints
compared with motion-aligned text (focused words are highlighted
in red). We see high joint velocity for hand and arm joints around
the words “french” and “now”.

focused on these elements. To extract phrases that may
map onto a semantic gesture, we select random three-word
phrases in the text. To experiment with individual words,
we can focus on nouns and verbs as they have a higher
chance of mapping onto iconic gestures. Adverbs and ad-
jectives can also be chosen since they can convey spatiotem-
poral properties of events and entities. This choice mech-
anism, which is motivated by the mapping of gestures to
linguistic structures, is also flexible enough for the users to
choose different linguistic features to focus on. We also
consider optimal stress word discovery as a future endeav-
our. Lastly, the success of word-level semantic guidance is
also affected by the amount of stress certain word has in
the audio. We show attention results for phrases and words
in Fig. 4 and gesture generation results in supplementary
video.
Interpreting Word-Excitation through Attention Maps.
Since we perform word-level guidance on text attention

maps, we include example results in Fig. 4. The atten-
tion map A is dependent on text conditioning and diffu-
sion timestep and shows the relation between chunks of
latent representation and text tokens. Therefore, perform-
ing word-level guidance at each diffusion timestep yields
slightly different attention distribution over words. We ob-
serve that as we move from t = T to 0, focused word tokens
(highlighted in red) start to get high attention, especially af-
ter t = T/2. We also see the effect of Gaussian smoothing
as the attention on focus words is not sharply focused on
only those words. Rather it is spread over its neighbour-
ing tokens as well. Lastly, notice the striped pattern of the
attention weights. This arrangement is a manifestation of
the separated body and hand latents that have been stacked
alternatively. It shows that the network learns to perform
attention in a separate manner for both types of latents and
guidance affects them differently across different layers as
well.
Limitations. Our method is, after all, a data-driven method.
It depends on the learned conditional gesture distribution
of text and other modalities, which can lead to it generat-
ing the most common gesture type (beat gestures) seen for
some words. Consequently, performing word-level guid-
ance does not always guarantee the specific motion of accu-
rate semantic sub-gesture type (iconic, deictic, metaphoric

etc.) at the focused word or phrase. However, as we ana-
lyzed, the usage of word-excitation guidance (WEG) mostly
results in a semantically meaningful gesture as compared to
the base prediction without WEG. For future works, a more
explicit representation of gesture types and their mapping to
words can be provided as a conditioning, which might help
in predicting semantically accurate gestures. Secondly, the
amount of focus each word/phrase attains in terms of ges-
ture movements is dependent on the fact that speech also
contains certain prosodic stress for that word. Similarly,
if the gestures around focused words are already stressed
adequately in motion or those words already have high at-
tention on them, then the change introduced by guidance
will only be subtle. Lastly, the choice of words affects the
type of stress in gesture movements predicted and this can
be highly subjective.

4. User Study
For evaluation of monadic synthesis, the user were shown a
randomly sampled set of 10 forced-choice questions. Each
question included a side-by-side animation of our method
along with one of MLD [2], CaMN [8], or the ground-truth.
The participants had to answer two question, (a) “Which

of the two gesture motions appears more natural? and (b)
“Which of the two gesture motions corresponds better with

the spoken utterance?”. These questions try to gauge plau-
sibility of the motions and alignment of the generated ges-
tures with the utterance. For the task of dyadic synthe-



(a) Text: “and dried fruits in september you’re boiling it in”

(b) Text: “and dried fruits in september you’re boiling it in”

(c) Text: “and dried fruits in september you’re boiling it in”

(d) Text: “after a while came and settled”

(e) Text: “after a while came and settled”

(f) Text: “after a while came and settled”

Figure 4. Text attention example with focus on a phrase: (a) t = 990 (b) t = 400 (c) t = 10 and example with multiple individual
words: (d) t = 990 (e) t = 400 (f) t = 10. Vertical axes show M ⇥ 2 latent chunks where even and odd indices stand for body and
hand joints respectively. Horizontal axes show word tokens where focused words are highlighted in red. Attention changes are highlighted
in red boxes where neighboring tokens are also included to show the effect of Gaussian smoothing. Lastly, “<bos>” & “<eos>” tokens
represent start and end of the text (refer to Method Sec.



sis, we showed 5 randomly sampled forced choice ques-
tions to each participant, comparing our method with the
adapted MLD and the ground-truth. The participants had
to judge the naturalness of the motions similar to previous
task and also answer the question: “In which of the two

interactions, the motion of interacting character fits well

with both speech of the the main agent as well as their own

speech, if any.” We report percentage preference for both
tasks. In the third section, we asked the users to evaluate
the word-excitation guidance. Each question included three
motions—corresponding to the ground-truth motion, non-
guided motion, and word-excitation guided motion — as
well as the words that need to be excited during synthesis.
We compare ground-truth, non-guided gesture, and word-
excitation guided gesture. The users were asked to rate each
motion on a Likert scale of 1-5, with 5 indicating the most
semantically aligned gesture.

5. Implementation Details
Motion Representation. The motion x corresponds to the
root-relative 3D coordinates for all J�1 joints and camera-
relative translation of the root joint [4, 14, 19, 20]. The
hand joints are also made relative to their corresponding
wrist joint. We also pre-process the joint positions follow-
ing [4] by normalizing the motion sequence to start the root
trajectory from the origin while facing the positive z-axis.

VAE. We implement decoupled scale-aware VAE using
two transformer encoders in order to make two halves of the
latent representation focus separately on body and hands.
Each encoder is based on transformer architecture with long
skip-connections utilized by Chen et al. [2] as they prove
this method to be effective in retaining high information
density in latent representation. The output of each en-
coder is combined into two quantities to represent Gaussian
distribution parameters µ� and ⌃� of the combined scale-
aware latent space Z , where � represent learnable weights
of encoders. We can sample z2⇥d using reparameterization
trick [6].

We train the VAE until convergence with a combina-
tion of losses to achieve the desired reconstruction qual-
ity. MSE-based reconstuction loss is applied on the recon-
structed motion x̂:

L2 = kx̂� xk2 (1)

Moreover, Kullback-Liebler divergence LKL is used for
regularizing the latent space:

LKL = DKL(N (z;µ�,⌃�)||N (z; 0, I)) (2)

We also apply Bone Length Consistency Loss [3], which en-
sures that bone lengths do not vary across frames in a ges-
ture sequence by minimizing the variance of bone lengths

Hyperparameter Value
Latent dimension d 128
Motion Length N 128

Number of Joints J 63
Motion chunks M 8

�KL 0.05
�lap 1
�bone 1

Transformer Layers 5
Attention Heads 2
Learning Rate 1⇥ 10�4

Optimizer AdamW [9]
FPS 25

Table 2. List of values used for training VAE for our method

Figure 5. Iterative process for the perpetual rollout of
arbitrary-length generation. This is based on the diffusion in-
painting technique.

ln.

Lbone =

PN
n=1(ln � l̄)2

n� 1
, (3)

Lastly, the VAE loss also contains a Laplacian regulariza-
tion term Llap as described earlier, to better reconstruct sub-
tle jerks in gestures and reduce jitter.

LV AE = L2 + �KLLKL + �lapLlap + �boneLbone (4)

In order to achieve time-aware latent representation, we
encode time-aligned M chunks of motion {x0

i}Mi=1 using
encoders by passing each x0

i from ⇠b and ⇠h to get ẑi. This
sequence ẑ = {ẑi}Mi=1 is applied with a positional encod-
ing [15] along M to represent time-alignment. Along with
positional encoding as queries, ẑ passed onto decoder D
as a memory to obtain x̂. This unique structure of ẑ al-
lows us to perform arbitrary length generation with latent
diffusion models, which generally are constrained to due to
fixed-length generation.

Perpetual Generation Rollout. During inference of our
diffusion framework, we leverage the time-aware latent
sequence {ẑi}Mi=1 to autoregressively generate latent se-
quences for arbitrarily long sequences. As compared to ear-



lier approaches [8, 18], we do not concatenate our model’s
output which may cause irregular motion at the point of
joining. We also do not encode variable length sequences in
our VAE framework as done by MLD [2]. Instead, we pro-
pose an autoregressive generation approach to predict the
time-aware latent sequence beyond M number of chunks.
The key to this approach is an iterative process (shown
by Fig. 5) where a sequence of future latent chunks is pre-
dicted based on the last k current latent chunks through a
denoising process. Given the sequence ẑ 2 RM⇥2⇥d rep-
resents motion x of first N frames, we call it ẑ1:M which is
known to us. We utilize the last k latent chunks from this
known sub-sequence, i.e. ẑ(M�k):M , and generate the next
M�k latent chunks through the denoising process to obtain
a new overlapping sequence ẑ(M�k):(2M�k). Every time
we need to generate the next (M�k) : (2M�k) sequence,
we first inject noise to the previously known (M � k) : M
sub-sequence until the t � 1 diffusion timestep. Then, this
sub-sequence is concatenated with the latent sub-sequence
at M : (2M � k) which contains new latents for the non-
overlapping part in (M � k) : (2M � k) sequence. This
concatenated sequence ẑ(t�1)

(M�k):(2M�k) is then passed to the
next denoising iteration where the process repeats by nois-
ing the known part for the next diffusion timestep. This
technique follows the masked denoising technique used for
diffusion image inpainting [10].

ẑ(t�1)
M�k:2M�k = �(q(ẑM�k:M , t� 1), ẑ(t�1)

M :2M�k) (5)

Here, the � operator concatenates along latent chunks to
total length of M for each sequence. When applied iter-
atively to the subsequent new frames, this process enables
an autoregressive rollout of fixed-length gesture sequences
into infinite-length synthesis. We set the value of the hyper-
parameter k as k = M/2 for simplicity.

Details on Denoising Network. We design denoising
network for the latent diffusion framework to predict
✏✓(ẑ(t), t). We implement the denoising schedule based
on DDPM framework with hyperparameters presented
in Tab. 3. This framework consists of a Markovian chain of
successively adding Gaussian noise ✏ to ẑ(0) for T timesteps
i.e. forward diffusion process. Through this process, ẑ(0),
which was sampled from data distribution, becomes ẑ(T ),
which follows noise distribution N (0, I) assuming T is suf-
ficiently large.

q
�
ẑ(1:T )|ẑ(0)

�
=

t=TY

t=1

q
�
ẑ(t)|ẑ(t�1)

�
(6)

where q(ẑ(t)|ẑ(t�1)) = N (ẑ(t)|
p
1� �tẑ(t�1),�tI), de-

scribes evolution of latent distribution during the noising

Hyperparameter Value
d 128

Range of �t [8.5⇥ 10�4, 1.2⇥ 10�2]
T 1000

�t Schedule Scaled Linear [13]
Self-Attention Heads 4

Decoder Layers 9
Learning Rate 7⇥ 10�5

Optimizer AdamW

Table 3. List of hyperparameters for denoising network in our
method

process at time step t. Here, �t represents the rate of dif-
fusion. The reverse diffusion process consists of denois-
ing ẑ(T ) ⇠ N (0, I) for T timesteps to generate a latent
sequence ẑ(0):

p✓
�
ẑ(0:T )

�
= p

�
ẑ(T )

� TY

t=1

p✓
�
ẑ(t�1)|ẑ(t)

�
, (7)

where p✓(ẑ(t�1)|ẑ(t)) is approximated using a denoiser
neural network f✓(ẑ(t�1)|ẑ(t), t,C), which is trained to pre-
dict noise We use transformer decoder network as f✓ which
takes ẑ(t�1) as queries along with diffusion timestep t and
conditioning set C as memory input. We apply positional
encoding to queries and individual memory inputs similar
to [15]. To better distinguish between body and hand la-
tents in ẑ(t�1), we add a learned embedding that aims to
differentiate between body and hand parts of the latent rep-
resentation. We also add a learned embedding to each ele-
ment of our conditioning set C separately which helps the
network differentiate between different conditioning types.
Each transformer layer starts with Self-Attention and Lay-
erNorm layers, along with a time-layer based on Stylization
Block [19] to incorporate diffusion timestep embedding.
Multi-modal cross attention consists of the same number
of heads as the number of elements in the conditioning set
C. The outputs of all heads are aggregated using a linear
projection, which is followed by another linear layer with
GeLU activation [5].
Guidance Parameters. We modify classifier-free guidance
to add modality-level control for each element in our con-
ditioning set. The random modality dropout rate is set to
10% and global guidance scale �m is set to 7.5. The val-
ues of wc is determined by the task at hand. For exam-
ple, if we want to extract only the gesture styles of different
speakers regardless of input text and audio, we set all wc

to 0 except ws = 1, which corresponds to speaker identity.
This will generate unconditional gestures in the style of a
specific speaker (see supplemental video for the example).
For word-excitation guidance, step size ↵, goes from 100 to
70.71 as it varies w.r.t. diffusion timestep. The kernel size



for Gaussian smoothing is 3.
Semantic Consistency Evaluation Model: Our method
can generate semantically meaningful gestures (as shown
in Suppl. Video), thanks to the proposed Word Excitation
Guidance (WEG). We conduct this ablation the following
way. First, we trained a binary classifier that classifies 1s
motions of the BEAT dataset into either beat gesture, or se-
mantic gesture type (based on the GT labels). Here seman-
tic class consists of iconic, metaphoric, and deictic classes.
This classifier is then used as an oracle to compute the re-
call of our generated motions for semantic class predictions.
Specifically, we extract the speech and text for the sentence
in which a semantic gesture has been labeled in dataset.
These are then input to CONVOFUSION to generate the cor-
responding gestures, with and without WEG. For the case
of WEG, we focus on the exact words wherein the semantic
gesture occurs in the sentence.

6. Evaluation Metrics
We report quantitative results on Beat Alignment Score [7],
FID, Diversity, L1 Divergence and Semantic Relevance
Gesture Recall (SRGR) [8] and here we briefly describe
each one of them. Beat Alignment Score was initially intro-
duced [7] to measure the alignment of music beats to dance
motion for the task of music-to-dance synthesis. This has
also been adapted for the task of gesture synthesis, where
it measures the correlation between gesture beats and audio
beats. It is useful in differentiating between static motions
which do not align well with the audio from natural-looking
gestures which have speech-aligned kinematic beats. How-
ever, it can report false high values if the motion has a large
amount of jitter because it would assume beats created by
jitter align well with most of the audio beats. We can see
this happening for methods that show high jitter [18, 22]
in our experiments. They have high Beat Alignment score
while their FID is also large.

We employ the Frechet Inception Distance (FID) met-
ric provided by Yoon et al. [18], also known as FGD. We
trained our FID network using implementation by Liu et

al. [8]. It is based on an autoencoder network that is
trained for reconstruction task, and is calculated by compar-
ing features of the ground truth data x and generated data x̂
through:

FGD(x, x̂) = kµr � µgk2 +Tr(⌃r + ⌃g � 2
p

⌃r⌃g) (8)

Methods that generate diverse gestures like ours and do not
contain pre-pose information unlike CaMN [8] and Multi-
Context [18], may suffer on this metric because our gestures
will not try to match ground truth motion. Diversity com-
putes the average pairwise Euclidean distance of the gesture
generations in the test set. L1 Divergence (also called L1
variance) measures the distance of all frames N in a gesture

sequence from their mean µN . Here B is size of test set.

L1div(x) =
1

B

NX

i=1

|xi � µN | (9)

This metric specifically identifies if the gestures are static in
movement and make less diverse movements along the gen-
eration length. As shown in supplemental video, CaMN [8]
and MLD [2] suffer from this problem whereas, our method
predicts different gestures according to the text and audio
conditionings and does not have static motion.

Semantic Relevance Gesture Recall (SRGR) uses se-
mantic score labelled in BEAT [8] as a weight for the Prob-
ability of Correct Keypoint (PCK) between the generated
gestures and ground truth gestures. It aims to reward be-
ing close to ground truth motion at points where a seman-
tically relevant gesture exists while also predicting diverse
gestures, as mentioned by Liu et al. [8]. This metric has a
similar issue as FID as it compares PCK between ground
truth and prediction and due to many-to-many correspon-
dence between gestures and speech, this might not be suit-
able. Therefore, we conclude that each metric focuses on
certain aspects of gesture generation and human-annotated
user study results are more conclusive to determine better
generation quality and to perform a holistic analysis of ges-
ture quality

7. Baseline Training Details
In the following, we provide details on how we process all
the different modalities for our dataset (Sec. 7.1) and pro-
vide details for training each method we use for comparison
(Sec. 7.2).

7.1. Dataset
BEAT. We utilize the BEAT dataset [8] in order to augment
the training data for our method so that it better generalizes
to the task of monadic gesture synthesis. It consists of 60
hours of English speaking training data, spanning 30 sub-
jects that perform gesture motions. The dataset is rich in
good training examples for monologue setting which can
serve as a good baseline dataset to train our method. In-
herently, BEAT’s motion representation is different than
what we use to train our method. Therefore, we re-target
their skeleton definition to our skeleton definition in order
to match it with our DND GROUP GESTURE dataset. More-
over, we convert their representation from BVH-based euler
angle representation to joint positions using forward kine-
matics. Then we resample their dataset from 120 FPS to
25 FPS in order to match it with our training configura-
tion. Lastly, we apply the preprocessing steps mentioned
in Sec. 5 to get the final motions which we separate into
5.12-sec chunks i.e. 128 frames for training our method.



DND GROUP GESTURE . To apply our method to the task
of dyadic synthesis, we utilize our recorded DND GROUP
GESTURE dataset (see Fig. 1) to extract interactions be-
tween people in our dataset. We record the dataset in BVH
format as well, however, we extract joint positions for train-
ing our method. We standardize dataset FPS to 25. Each
of the five people in our dataset has their own separate au-
dio channel which we have post-processed to get clean and
denoised audio. We align audio channels with the recorded
tracking and verify it manually as well. Finally, we sep-
arate out motions for each person and assign them iden-
tities which are kept consistent across multiple recording
sessions. Then, we preprocess the dataset and separate it
out in chunks of 128 frames.
Training/Test Splits. We split the BEAT dataset by reserv-
ing 5 out of 30 English speakers for the testing set, while the
remaining go into training and validation splits. Therefore,
all the results and comparisons on monadic synthesis using
BEAT dataset are provided on unseen speakers which shows
a method’s generalizability to unseen audio and text inputs.
For dyadic synthesis, we randomly sample and take out 10
percent for testing and rest for training and validation.
Representation of Modalities. We process audio by sam-
pling it to 16000 Hz and extracting melspectrograms us-
ing librosa toolbox [11]. We use 80 mel-bands and a hop
length of 512 for melspectrogram conversion. We process
text through text tokenizer and convert them to embeddings
through T5 text encoder [12] implementation by Hugging
Face [16].

Lastly, all methods are trained on these dataset splits
to ensure fairness. There are some differences between
the type of representation used for audio and text in each
method, which we elaborate on in the next section.

7.2. Methods for Comparison

ConvoFusion (Ours). We train our method on 128-frame
sequences by learning a latent space representation of them
Then we use our diffusion framework on top of it. Inter-
estingly, we can incorporate both monadic and dyadic ges-
ture synthesis tasks into single training. Thanks to Modal-
ity Guidance, we can use different modalities interchange-
ably by dropping them out of the training batch and set-
ting an unconditional token in their place. For example,
BEAT dataset only contains single-person gesture annota-
tions and does not contain a co-participant, hence making
it non-trainable for the task of dyadic synthesis. However,
we can simply provide an unconditional token for the co-
participant’s text which automatically turns the contribu-
tion of the corresponding modality guidance term to zero,
and BEAT dataset can be trained jointly with DND GROUP
GESTURE dataset. A similar approach can be taken for se-
mantic annotation labels provided by BEAT dataset, which
we do not provide for ours.

CaMN [8] & Multi-Context [18]. We train both of these
methods using the official implementation of CaMN by
Liu et al. on GitHub. The only modification that took
place was the addition of our dataset pipeline which in-
cludes our version of BEAT dataset and DND GROUP GES-
TURE dataset, which makes the motion dimensions from
141 to 189 to match to our setting. We use the provided
WavEncoder in the implementation to process audio sig-
nals instead of melspectrograms. Lastly, we use motion-
aligned text instead of normal text inputs to be consistent
with them. We also use the provided text-encoder to add
our textual vocabulary to the text tokenizer for text prepro-
cessing.
MLD [2]. This method by Chen et al. which uses latent dif-
fusion models, was presented for the task of text-to-motion
synthesis. We extend this method for the gesture synthesis
task by utilizing our training procedure. To be consistent
with their method, we use the text encoder which was used
by MLD.
DiffGesture [22]. We use their official implementation on
GitHub to train this method for the task of monadic ges-
ture synthesis. Since DiffuGesture [21] does not provide
an implementation for dyadic synthesis task and it is highly
based on DiffGesture, we follow DiffuGesture’s implemen-
tation details as close as possible and adapt DiffGesture to
the dyadic synthesis task. As this method was originally
trained on TED Dataset [17], which contains only the upper
body, we double the capacity of their transformer network
to cater to the increase in dimensionality in our setting to
ensure fairness. The audio and text processing is kept con-
sistent with DiffGesture’s implementation. Lastly, for the
task of dyadic synthesis, we provide co-participant’s text as
an additional conditioning input to match it with our train-
ing pipeline.
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