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1. Creating Flicker Fits
To train BUDDI, we need 3D poses for two people interact-
ing in close proximity. We create this training data by fitting
SMPL-X to FlickrCI3D Signatures [3] with an optimiza-
tion method that takes ground-truth contact annotations into
account. FlickrCI3D Signatures is a publicly available
datasets consisting of images collected from Flickr with 3D
contact annotations. This is a complex task that requires
data preprocessing steps. First, images in Flickr may con-
tain children and infants who are not supported by SMPL-X
[9]. Consequently, we follow previous work [8] and merge
SMPL-X with SMIL-X [4] to represent a range of body
shapes from children to adults. Second, we observe that
keypoints detected by ViTPose [11] are more accurate than
those detected by OpenPose [2], especially when people are
occluding each other, except for the feet, which are often not
detected. Therefore we merge OpenPose and ViTPose for
our optimization method. Third, our method takes multiple
modalities as input (keypoints and SMPL bodies estimated
by BEV [10], and ground truth contact maps for Flickr im-
ages) and uses these in estimating high-quality SMPL bod-
ies. Fourth, the detections of BEV are in SMPL format,
while the ground-truth contact maps for Flickr are provided
for the SMPL-X template mesh. Since these two body mod-
els are not compatible, i.e. their pose and especially their
shape space is different, we create “approximate” BEV es-
timates in SMPL-X format by using the SMPL pose as if
it was SMPL-X while properly converting the body shape
from SMPL to SMPL-X.

1.1. Preprocessing

In the next section, we describe the preprocessing steps per-
formed to create Flickr fits. We use the same preprocessing
for our optimization with BUDDI.

Including children. Since SMPL [6] only models adult
body shapes, most human pose and shape regressors do
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not consider child body shapes explicitly. However, we
found that FlickrCI3D Signatures includes images of chil-
dren (roughly 10% of the images). Following the SM-
PLA [8] convention, BEV also estimates a scale param-
eter s, which is used to interpolate between SMPL [6]
(adult model) and SMIL [4] (infant model) for the template
meshes and shape blend shapes. A scale value of s = 0.0 is
equivalent to SMPL only, a scale value of s = 1.0 is equiv-
alent to SMIL only, and all the values in between model in-
termediate stages. To extend this from SMPL to SMPL-X,
we use the scale parameter estimated by BEV to interpolate
between the SMPL-X and the SMIL-X template and shape
blend shapes in SMPL-X topology. We visually found that
this interpolation works well for s ≤ 0.8, so we exclude
pairs where the detected scale is s > 0.8 for one of the
interaction partners. In practice, we concatenate the inter-
polation and body shape parameters such that β ∈ R11. We
refer to this model as SMPL-XA.

Matching input detections. As input, we have the esti-
mated 3D bodies from BEV [10] and we have a dataset of
ground-truth human-human contacts. The bodies in these
two data sources are not in correspondence. To generate
the Flickr Fits, we must first automatically put them in cor-
respondence so that we can optimize the BEV bodies by
exploiting the ground truth contact information.

In particular, we have (1) detected meshes from BEV,
(2) 2D keypoint detections from ViTPose [11], and (3)
ground-truth bounding boxes indicating the interacting pair
of humans. We observed that the ground-truth bounding
boxes typically match with the bounding boxes surround-
ing OpenPose [2] keypoint detections. As a result, we only
need to correspond the OpenPose detections with ViTPose
detections and the BEV bodies. Since we can reproject
the 3D joints from BEV bodies to 2D keypoints, both cor-
respondence problems require us to solve the assignment
between sets of 2D keypoints. To do this, we compute a
keypoint-cost matrix taking the detection confidence scores
into account. We only consider keypoints with confidence
score greater than 0.6 (for BEV all keypoints have by de-
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fault a score of 1.0 due to the amodal prediction of the hu-
man body). We make assignments in a greedy way, while
also set a threshold (0.008) to discard matches with large
matching distance.

Merging keypoints. Qualitatively, we found that
ViTPose performs better than OpenPose, particularly for
people that are heavily occluded. Since ViTPose (unlike
OpenPose) does not detect keypoints on the feet, we can
merge the ViTPose pose detections with feet keypoints
detected by OpenPose. We perform this extension only if
the L2 distance between ViTPose and OpenPose ankles
is less than 5 pixels. Additionally, since many images in
FlickrCI3D Signatures include people who are truncated
below the waist, we often have missing or wrong keypoint
detections for the lower body. Because of this, we use the
projected BEV ankle joints, when the ankle keypoint detec-
tion confidence score is less than 0.2. Finally, the original
keypoint values korig are normalized by the keypoint bound-
ing box size via k = korig/(max(bbheight, bblength) ∗ 512).
These steps give us a set of 2D keypoints that we use
to generate the Flickr fits via an optimization method
described below.

SMPL to SMPL-X body shape conversion. Our method
takes BEV estimates as input and optimizes them to fit the
image evidence. Since BEV estimates meshes in SMPL
topology and the ground-truth contact maps are provided in
SMPL-X format, we transfer the BEV estimate to SMPL-X.
Ideally, one would fit SMPL-X to SMPL via optimization.
This process is time consuming and we found that it is suf-
ficient to initialize the optimization routine by using the
SMPL pose parameters with the SMPL-X body. For body
shape, we solve for the SMPL-X body shape using a simple
least-squares optimization. The shaped vertices, VSMPL and
VSMPL-X, are obtained via

VSMPL = TSMPL +DSMPLβSMPL, and
VSMPL-X = TSMPL-X +DSMPL-XβSMPL-X,

(1)

where TSMPL and TSMPL-X are the SMPL and SMPL-X
template meshes, DSMPL and DSMPL-X the shape blend
shapes, and βSMPL and βSMPL-X the shape parameters. Only
βSMPL-X is unknown. Since the topology between SMPL
and SMPL-X is different, we use a SMPL-to-SMPL-X ver-
tex mapping M ∈ R10475×6890, such that DSMPL-X =
MDSMPL. Then we can directly solve for body shape,
βSMPL-X, in a least-squares manner:

βSMPL-X = (DT
SMPL-XDSMPL-X)

−1DT
SMPL-XMDSMPLβSMPL.

Additional details. We use the first 10 shape components
and keep the facial expression and finger pose fixed. Note

that, although we use SMPL-X, we do not optimize hand
pose due to the lack of 3D data of close human interaction
with hands, as well as the lack of robust finger keypoint
detectors for people in close proximity. Extending this work
to include detailed hand contact would be interesting future
work.

1.2. Optimization with ground-truth contact anno-
tations

We create SMPL-XA fits for Flickr images using ground-
truth contact annotations. We use these fits to train our
generative models, along with a small set of MoCap 3D
poses. We also use them to evaluate the pose estimation er-
ror (JOINT PA-MPJPE) in Table 1 in the main manuscript.

Optimization-based methods for fitting 3D meshes to
RGB images usually rely on sparse signals, like 2D key-
points (ground-truth or detected), and priors for human pose
and shape [1, 9, 13]. Only a few methods explicitly use self-
[7] or human-human [3] contact in their optimization.

Our optimization method takes as input the discrete
human-human contact annotations and, for each person, de-
tected 2D keypoints [2, 11], and initial estimates for their
pose, θ̃, orientation, ϕ̃, shape, β̃, and translation, γ̃, which
are provided by the output of BEV [10].

Given these inputs, we take a two-stage approach: In the
first stage, we optimize pose, θ, shape, β, and translation,
γ, encouraging contact between discretely annotated body
regions, while allowing the bodies to intersect. In the sec-
ond stage, we activate a new loss term to resolve human-
human intersection. The output of the first stage is usually
close to the final pose with only slight intersections, because
of which we optimize only pose and translation and hold the
body shape constant in stage two. The objective function is:

LCmap-fitting =λJLJ + λθ̄Lθ̄ + λθLθ+

λβLβ + λPLP + λCDLCD ,
(2)

where LJ denotes the 2D re-projection error, Lθ̄ is a prior
on the initial pose, Lθ is a Gaussian Mixture Model pose
prior [1], and Lβ an L2-prior that penalizes deviation from
the SMPL-X mean shape. The discrete human-human con-
tact loss, LCD , minimizes the distance between vertices,
v/u, assigned to regions, r, with annotated discrete human-
human contact via:

LCD =
∑
i,j

CD
ij min

v∈ri,u∈rj
∥v − u∥2. (3)

LP denotes an interpenetration loss, active in the second
stage only, that pushes inside vertices to the surface. We
use winding numbers to find intersecting vertices between
two meshes, Ma and M b, and vice versa. This operation is
usually slow and memory intensive, which is why we use
low-resolution meshes of SMPL-X with only 1K vertices.
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With V a
I we denote vertices of Ma intersecting the low-

resolution mesh of M b; V b
I follows the same notation. The

intersection loss term is defined as:

LP =
∑
v∈V a

I

min
u∈V b

∥v − u∥2 +
∑
v∈V b

I

min
u∈V a

∥v − u∥2 . (4)

We find functional weights, λ, for each term in the objective
function (see Table 1). The results of this fitting approach
are illustrated in Figure 1. We use this optimization routine
to reconstruct interacting people depicted in the FlickrCI3D
Signatures [3].

2. Diffusion model
Transformer architecture. To embed each body model
parameter xij of person j ∈ {1, 2} and parameters i ∈
{ϕ, θ, β,γ} of size di in the latent space dimension dl =
152, we use linear-SiLU-linear sequences:

fij(xij) = SiLU(xijA
T
ij + bij)B

T
ij + cij ,

where Aij ∈ Rdl×di , bij ∈ Rdl , Bij ∈ Rdl×dl , and
cij ∈ Rdl . After passing these parameters through the
transformer, we again use a linear-SiLU-linear sequence to
project them back into their original dimension di.

When BUDDI is trained with BEV [10] conditioning, we
embed the conditioning in a similar fashion as the ground
truth parameters, concatenate them along the token dimen-
sion, and add per-person and per-parameter embedding lay-
ers. In Fig. 2, we show the design of our conditional model.

3. Optimization
Here, we provide additional information for the optimiza-
tion routines, i.e. optimization with contact map, VAE,
heuristic, and BUDDI prior. In Table 1 we define the
weights of each loss term. Every optimization runs for a
maximum of 1000 iterations per stage, except optimization
with BUDDI which we stop after 100 iterations. For termi-
nation, we use early stopping and we keep track of the loss
value at the latest 10 iterations. The maximum runtime of
our optimization method with BUDDI used as prior is about
160 seconds. We use these values to fit a line with linear re-
gression f(x) = ax+ b and terminate if a < −1e− 4. We
run each optimization for two stages. The second stage’s
reference poses, θ0, which are used in Lθ̃, are taken to be the
output / last pose of the first stage. We provide pseudo code
in Listing 1 showing the optimization routine with BUDDI
used as prior.

4. Training and Testing Datasets
4.1. Flickr Fits

We split the Flickr [3] training images into training and val-
idation sets and use the provided test split for testing. Fits

Figure 1. Flickr Fits. We visualize the output of the optimiza-
tion process that reconstructs two people in close proximity using
ground-truth contact maps, shown from three different views.
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λJ2D λθ̃ λθ λβ λCB λdmin λP λθBUDDI λγBUDDI λβBUDDI λVAE

Flickr Fits 0.04/0.1 200/200 4/4 40/0 10/10 0/0 0/1000 0/0 0/0 0/0 0/0
BUDDI 0.02/0.02 200/200 0/0 0/0 0/0 0/0 0/10 100/100 10/10 1e5/1e5 0/0
VAE 0.02/0.1 200/200 2/2 40/0 0/0 0/0 0/0.1 0/0 0/0 0/0 1/1
Heuristics 0.02/0.1 200/200 2/2 40/0 0/0 1e5/1e5 0/0.1 0/0 0/0 0/0 0/0
Heuristics (a) 0.04/0.1 200/200 4/4 40/0 0/0 1e5/1e5 0/1000 0/0 0/0 0/0 0/0
Heuristics (b) 0.02/0.02 200/200 4/4 40/0 0/0 1e5/1e5 0/10 0/0 0/0 0/0 0/0

Table 1. Weights of the different loss term during the optimization. We consider the case of using pseudo-ground truth contact maps,
the heuristics, and BUDDI. Optimizations with BUDDI and pseudo-ground truth are run for two stages. The optimization with heuristics
converges quickly so a single stage is enough.

Figure 2. Detailed architecture of BUDDI with conditioning.
When BUDDI is conditioned on model parameters, cH, detected
from BEV [10], we concatenate the detected parameters (body
global orientation, pose, shape, and translation for person a/b),
with the input parameters along the token dimension and add per-
person and per-parameter embedding vectors.

can be noisy for example, when the assignment between
contact annotations and keypoints is wrong or when key-
point detectors fail badly. To provide a reliable test set for
3D pose for images taken in the wild, we manually curate
the Flickr Fits test set and detect 24 out of 1427 noisy fits.
The final curated Flickr Test dataset contains 1403 interac-
tions. We do not curate the training dataset.

We further evaluate the optimization method with
ground truth contact maps on CHI3D (53/50mm PER-
PERSON PA-MPJPE and 80mm JOINT PA-MPJPE) and
on FlickrCI3D Signatures (45/87/97/99/100 PCC for radius

5/10/15/20/25).

4.2. Hi4D

Hi4D [12] is a MoCap dataset containing interaction be-
tween 20 pairs of people. Each pair performs about five
interactions such as dancing, fighting, hugging, doing yoga,
talking, etc. We split this dataset by subject pair into 14/3/3
for train/val/test. We use subjects [00, 01, 02, 09, 10, 13,
14, 17, 18, 21, 23, 27, 28, 37] for training, [16, 19, 22] for
validation, and [12, 15, 32] for testing. Since Hi4D was
originally provided in SMPL format, we fit SMPL-X to the
estimates via optimization using the code provided in the
SMPL-X repository [9]. The dataset provides a start and
end frame from/to which each sequence involves physical
contact between two people. We use every 5th frame from
the contact sequence for training and testing.

4.3. CHI3D

CHI3D [3] is a MoCap dataset containing interactions be-
tween 3 pairs of people. Each pair performs eight interac-
tions (grab, handshake, hit, holding hands, hug, kick, pos-
ing, and push) in various ways summing up to a total of
about 120 sequences per subject pair. We use subjects [02,
04] for training and leave [03] for evaluation. Each se-
quence has a single frame with contact labels. We use this
frame from each sequence for training and evaluation.

5. Evaluation

5.1. Baseline Methods

5.1.1 Transformer

We use the network design of BUDDI, i.e. embedding, per-
son, and parameter layers, the transformer encoder block
and layers to bring the latents back into parameter space.
The network takes BEV [10] estimates as input and its task
is to predict the correct SMPL-X parameters. We train
this network on the same data as the conditional version of
BUDDI. This baseline is equivalent to a single-shot (non-
iterative) version of our diffusion model.
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5.1.2 Contact Heuristic

We design an optimization method which is similar to the
routine we use to create Flickr Fits, but replaces the LCD ,
i.e. the loss that takes ground-truth contact maps into ac-
count, with a contact heuristic loss Ldmin . The contact
heuristic loss encourages contact between the two people
by minimizing their minimum distance. Given the vertices
of each mesh, v ∈ VX1 and u ∈ VX2, we define the contact
heuristic loss as

Ldmin = min
v,u

||v − u||

and the overall objective function to be minimized becomes

LHeuristic-fitting =λJLJ + λθ̄Lθ̄ + λθLθ+

λβLβ + λPLP + λdminLdmin .
(5)

5.1.3 BUDDI (gen.)

The conditional version of BUDDI can generate human
meshes in close social interaction from noise given a BEV
estimate. We use these generations to initialize the opti-
mization routine and evaluate them against the ground truth.

5.1.4 VAE

We also compare against VAE [5] using the same training
data. This model projects the SMPL-X parameters of two
people into latent vectors of size 64, modeling a distribu-
tion, and from the latent space back into parameter space.
Similar to the design of BUDDI, we embed each parameter
via an MLP. We use two encoder and two decoder layers.
The VAE training loss is

LVAE-training = Lθ + Lβ + Lγ + Lv2v + LKL.

We use the same body model parameter losses as dur-
ing BUDDI training. LKL is a standard KL-divergence loss
between two Gaussians:

LKL = log
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2

During optimization, instead of optimizing body model
parameters, we optimize in the VAE’s latent space. The
optimization objective is:

LVAE-fitting =λJLJ + λθ̄Lθ̄ + λθLθ+

λβLβ + λPLP + λVAELVAE,
(6)

where LVAE denotes a squared L2-loss on the VAE latent
vector.

5.1.5 Ablation of baseline methods

We run our baseline methods under different conditions, i.e.
we use different weights for the Heuristic for a better com-
parison against the weights used in Flickr Fits and when
optimizing with BUDDI used as a prior. The loss weights
of Heuristic (a) are similar to those of Flickr Fits and the
weights of Heuristic (b) to those of BUDDI. We report these
numbers in Table 2, Table 3, and Table 4.

5.2. Further analysis of optimization with BUDDI

Ablation of loss terms. To provide insights into the con-
tribution of each loss term in the optimization routine with
BUDDI used as prior, we consecutively add a term the the
optimization routing starting from LJ2D, i.e. the 2D key-
point re-projection loss only, and evaluate the JOINT PA-
MPJPE (↓) on Hi4D. The error is 118/118/111/99/99/98
for LJ2D/+LP /+Lθ̃/+LγBUDDI /+LβBUDDI /+LθBUDDI . This result
emphasizes the importance of the translation prior, LγBUDDI ,
which has the biggest impact on the final result. BUDDI
knows about the relative 3D translation between two peo-
ple in close social interaction and guides the optimization
routine towards more plausible relative depth.

Heuristic vs. BUDDI. Our evaluation indicates that the
heuristic provides a strong baseline as it achieves a low
PA-MPJPE on all three datasets. Our hypothesis is that
the Heuristic is particularly strong for poses with only a
few physical contact points. To quantify this assumption,
we compute the percentage of vertices that are in contact
(with distance ≤ 10cm to the other person) for each action
in Hi4D. Ordering activities by amount of contact in Hi4D
gives: basketball (7%), dance (9%), fight (10%), highfive
(12%), talk (18%), backhug (23%), cheers (24%), pose
(29%), kiss (46%), sidehug (47%), hug (53%). The contact
percentage is indicated in brackets; red means the heuris-
tic is better than BUDDI and green means BUDDI is better
the heuristic. As the amount of contact increases (i.e. be-
comes more complex), BUDDI significantly outperforms
the heuristic. On average, BUDDI outperforms the heuristic
by 23 mm.
5.3. Perceptual study

We provide several quantitative evaluations of BUDDI in
the main paper but there are aspects of human interaction
that are subtle and best judged by people. In the main part of
this paper we present the results of the perceptual study that
evaluates how realistic the generated interactions sampled
from BUDDI are compared to meshes sampled from a VAE,
the training data, and a random configuration of meshes.
Here, we show the layout and instructions of the perceptual
study in Figure 3. We randomly sample 256 meshes from
one training batch of size 512 created with a 60/20/20 ratio
of meshes from Flickr/Hi4D/CHI3D. The meshes from the
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PER PERSON ↓ JOINT ↓ JOINT PA-MPJPE ↓
PA-MPJPE PA-MPJPE backhug basketball cheers dance fight highfive hug kiss pose sidehug talk

Heuristic 67 / 71 121 168 83 94 131 94 68 159 159 118 113 109
Heuristic (a) 68 / 72 122 166 82 93 126 92 68 161 158 122 122 114
Heuristic (b) 68 / 73 124 164 90 92 130 95 68 161 158 125 124 117

Table 2. Evaluation of BUDDI on Hi4D. We compare the output of BUDDI to the proposed baseline methods on the Hi4D challenge. The
first block shows methods that do not use Hi4D data during training or are optimization based without access to priors trained on Hi4D.
BUDDI (F,C) in particular, is our model BUDDI trained on Flickr and CHI3D data only. All errors are reported in mm for 3D Joints.

PER PERSON ↓ JOINT ↓
PA-MPJPE PA-MPJPE

Heuristic 49 46 105
Heuristic (a) 49 47 103
Heuristic (b) 47 45 103

Table 3. Quantitative Evaluation on CHI3D. We compare dif-
ferent versions of the baseline optimization with contact heuristic
on CHI3D (pair s03). All errors reported in mm for 3D Joints.

JOINT ↓
PA-MPJPE

PCC at radius ↑
5 10 15 20 25

Heuristic 68 14 34 49 61 70
Heuristic (a) 69 11 30 45 57 66
Heuristic (b) 72 12 30 45 57 67

Table 4. 3D Pose Evaluation on FlickrCI3D Signatures. We
compare different versions of the baseline optimization with con-
tact heuristic on the Flickr fits using their joint (two-person) PA-
MPJPE expressed in mm. We also evaluate the percentage of cor-
rect contact points (PCC) for radius r mm.

training batch are real samples from MoCap or by fitting
SMPL-X to images with ground-truth contact map annota-
tions. We sample 256 from BUDDI (unconditional model)
and the VAE. To create the random baseline, we center all
meshes in the training batch, shuffle the people along batch
and person dimensions, and sample 256 mesh pairs. This
is equivalent to real samples, except that each person are
sampled randomly and not as a pair. Using Amazon Me-
chanical Turk (AMT), each participant was asked to rate 68
video comparisons per human intelligence task (HIT) with
each video showing one pair of meshes at 360-degree views.
Each HIT starts with 10 training videos (not used in evalua-
tion) and contains 10 catch trials. Catch trials show implau-
sible interaction, e.g. two people with random poses placed
on top of each other. The training videos are presented at
the beginning of the task, and the method and catch trial
videos appear in random order. The remaining 48 compar-
isons show one sample from BUDDI against either VAE
/ random baseline / or training data (12 comparisons per
method). We randomly shuffle the video order per HIT and
left / right. Each HIT is conducted by 6 participants. We
exclude HITS where participants fail three or more catch

trials. Our final results were computed with the responses
from the 83/96 participants who passed.

5.4. Additional qualitative results and failure cases

We provide additional qualitative examples of optimiza-
tion with BUDDI and compare them to optimization with
heuristics and BEV in Figure 4 and Figure 6. Failure cases
are provided in Figure 7.
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Figure 3. Amazon Mechanical Turk perceptual study layout and instructions. On the left, we show a 360-degree video of the two
interacting people. On the right, the rating scale.
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Figure 4. Optimization with BUDDI. Additional qualitative examples from optimization with BUDDI compared to BEV. We provide the
overlay and three additional views per method. Optimization with BEV (first method / columns 2-5), optimization with BUDDI (second
method / columns 6-9).
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Figure 5. Optimization with BUDDI (continuation). Additional qualitative examples from optimization with BUDDI compared to BEV.
We provide the overlay and three additional views per method. Optimization with BEV (first method / columns 2-5), optimization with
BUDDI (second method / columns 6-9).
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Figure 7. Failure cases optimization with BUDDI. Failure cases from optimization with BUDDI. In the first row the depth ordering of
leg arm is wrong. The image in row 2 contains less common contact so that BUDDI suggests for blue to hold red’s shoulders instead of the
rope. The estimated predicted by our method suggests a plausible pose that is not consistent with the image due to single-view ambiguity.
The last row shows a failure case due to intersection between arm and torso.
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1 import smplx
2 import buddi
3

4 # optimization params
5 num_stages = 2
6 max_iterations = 100
7 t = 10 # noise level
8

9 # create smpl and buddi
10 smpl = smplx.create(model_folder)
11

12 # load buddi denoiser model (D)
13 buddi = buddi.create(checkpoint_path).eval()
14

15 # load detected keypoints and bev
16 kpts = load_keypoint_detections(img_path)
17 bev = load_bev_estimate(img_path)
18

19 # sample from buddi conditioned on BEV
20 buddi_sample = sample_from_buddi(cond=bev)
21

22 # initialize the optimization
23 smpl.params = buddi_sample
24

25 # run optimization
26 for ss in range(num_stages):
27 optimizer = setup_optimizer(smpl, ss)
28

29 for ii in range(max_iterations):
30 # fitting losses
31 fitting_loss = get_fitting_loss(
32 smpl, buddi_sample, kpts)
33

34 # detach current smpl, then diffuse & denoise
35 with torch.no_grad():
36 diffused_smpl = smpl + sample_noise(t)
37 denoised_smpl = buddi(diffused_smpl, t)
38

39 # compute diffusion losses
40 diffusion_loss = get_diffusion_loss(
41 smpl, denoised_smpl)
42

43 # final loss of iteration ii of stage ss
44 total_loss = fitting_loss + diffusion_loss
45

46 # backprop
47 optimizer.zero_grad()
48 total_loss.backward()
49 optimizer.step()
50

51 # check stopping criterium
52 if converted:
53 break

Listing 1. Pseudo code for optimization with BUDDI.
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