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Appendix

In this appendix, we provide additional qualitative and
quantitative results and discuss training and evaluation de-
tails.

A. Additional qualitative results

We provide additional qualitative comparisons with the
baselines on RealEstate10K [13] in Fig. 2 as well as on
ScanNet [5] in Fig. 4. While PhotoNVS [12] accumulates
errors over the autoregressive sampling process, our model
synthesizes realistic images for all target poses jointly. In
comparison to DFM [9], our approach leverages strong
image- and video-priors to achieve noticeably higher image
fidelity.

Furthermore, we demonstrate the stochasticity of our ap-
proach in Fig. 3 where using the same reference image and
target poses, our probabilistic method synthesizes multiple
plausible novel views.

We also present an in-the-wild and 360° trajectory in Fig. 1.
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Figure 1. Out-of-distribution examples: In-the-wild image with
unknown camera parameters and 360° camera rotation.

B. Implementation details
B.1. Baselines

DFM We use the official implementation of the au-
thors (https://github.com/ayushtewari/DFM.
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git). On Realestatel0OK, we evaluate the provided pre-
trained checkpoint. On ScanNet, we train a model
from scratch, following the official instructions for
RealEstate10k. More specifically, we first train the model at
resolution 64 x 64 for 75K iterations with a total batch size
of 16 on 8 NVIDIA A100-SXM4-80GB GPUs. Next, we
fine-tune the model at resolution 128 x 128 for 60K itera-
tions using a total batch size of 8. At both resolutions, larger
batch sizes did not fit in the 80GB memory of the GPUs.

PhotoNVS We use the official implementation of
the authors https://github.com/YorkUCVIL/
Photoconsistent-NVS.git and the provided check-
point on Realestate10K. On ScanNet, we use the pre-trained
VQGAN provided by the authors and train the model at
256 x 256 resolution for 500K iterations using 8 NVIDIA
A100-SXM4-80B GPUs with an effective batch size of 64.

MVDiffusion Since MVDiffusion is a purely text-
conditional model, we adapt the official implemen-
tation (https : / / github . com/ Tangshitao /
MvDiffusion.git) to accept a reference image at
inference time. We encode the reference image into latent
space and then encode it into the diffusion model’s Gaus-
sian prior space using DDIM inversion. During sampling,
the encoded reference image is added to the batch. Since
MVDiffusion uses attention layers that operate on all
images in the batch jointly, the reference frame affects the
sampling for all images. However, during sampling the
score estimate is calculated using the full batch, while for
DDIM inversion we can only obtain the score estimate for
the reference image. In practice, sampling does hence not
reproduce the reference image faithfully. We address this
issue by additionally optimizing the reference latent after
each denoising step to match the reference image. For
the optimization at each sampling step, we use Adam [0]
with a learning rate of 0.1 and train with an L2-Loss and a
perceptual loss for 10 iterations.

Text2Room We use the official implementation of
the authors (https://github.com/lukasHoel /
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Figure 2. Additional qualitative comparison results on RealEstate10K [13].
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Figure 3. Different samples generated by our probabilistic approach using the same reference image and target trajectory.

text2room) which also supports image-conditional gen-
eration. We follow the original setup and use IronDepth [1]
for depth prediction and StableDiffusion2 inpainting
(https : / / huggingface . co / stabilityai /
stable-diffusion-2-inpainting) for image
inpainting. Since Text2Room formulates the problem as
pure depth-to-image/inpainting task, the same pretrained
checkpoints can be used for both datasets, RealEstate10K
and ScanNet, and no additional training is required.

B.2. MultiDiff

Training details For the encoding of the warped refer-
ence images, we use the encoder layers of the pre-trained
text-to-image model Stable Diffusion 1.5 [7] and use the
provided VQ-VAE for latent encoding and decoding. We
initialize the denoising layers of our U-Net model with the
pre-trained weights of VideoCrafter [4], a latent video dif-
fusion model trained on large scale video data [2]. The tem-
poral attention layers serve as strong prior for consistency
- see performance of "MultiDiff no vid.” in Table 3 of the

main paper and Fig. 9 for a qualitative comparison. Nev-
ertheless, we fine-tune all layers of the U-Net for the novel
view synthesis task to enable the attention layers to learn
correspondences between multiple views. For training, we
use Adam [6] with a learning rate of 1e-05 and batch size of
6 with 16 target views per batch at a resolution of 256 x 256.
Using 8 NVIDIA A100-SXM4-80B GPUs with an effec-
tive batch size of 48, we train for 300K iterations. We use
DDPM [§] noise scheduling using ¢ = 1000 time steps for
denoising and perform evaluation using DDIM[8] sampling
with 35 steps.

For noise warping, we found that using nearest-neighbor
with a receptive field size of 4px at 256px resolution gave
the best results. This limited receptive range ensures that
the noise distribution remains roughly normal, preventing
strong zooms from resulting in a few pixels covering large
image portions.

Inference details Using the estimated depth maps with
nearest-neighbor interpolation, we calculated the average
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Figure 4. Additional qualitative comparison results on ScanNet [5]. Note that MVDiffusion requires the scene mesh for inference.



warping overlap of the initial image with the last frame
in the sequence: 20.4% (24.7%) on RealEstate10K (Scan-
Net). The described refinement is applied on poses where
the warping overlap is below 20%, which occurs in 51.8%
(47.1%) of cases.

C. Evaluation

Data processing On RealEstate10K, we randomly select
1K sequences with at least 200 frames. For evaluation, for
each sequence, we choose a random starting frame at least
200 frames ahead of the last frame. We select 16 frames for
evaluation that we uniformly distribute within the interval
of 200 views from the starting frame. Following previous
evaluation protocols, for short-term evaluation, we set the
5th view to be 50 frames after the starting view in the orig-
inal video. For long-term evaluation, the last view corre-
sponds to the 200th frame after the starting frame.

On ScanNet, for each of the 100 test scenes, we sample 10
starting views ensuring at least 100 frames offset from the
last frame in the recordings, resulting in a set of 1K test
sequences. Since the camera movement in ScanNet record-
ings is considerably higher and the frame rate noticeably
slower compared to RealEstate1 0K, we consider sequence
lengths reduced by 50% in the original video. Therefore, we
consider the 25th frame for short-term and the 100th view
for long-term evaluation relative to the starting frame.

TSED To compute TSED scores [12], we use the of-
ficial implementation from (https://github.com/
YorkUCVIL/Photoconsistent —~NVS) and provide
additional quantitative results in Fig. 6 and Fig. 5. While
DFM achieves the highest consistency scores due to its Pix-
elNeRF [! 1] formulation, it suffers from noticeably worse
image generation quality compared to MultiDiff (see Table
1 and 2 of the main paper as well as Fig. 2 and Fig. 4). As
DFM does not support higher image resolutions, we mea-
sure TSED at 128 x 128 resolution.

Inference speed We report inference performances of
PhotoNVS, DFM, and MultiDiff in Tab. 1. As our approach
infers multiple frames in parallel and uses an efficient atten-
tion architecture, we observe noticeably shorter inference
times while achieving higher image fidelity and consistency
than the baselines. We note that our approach also scales to
larger resolutions as the underlying latent video prior can
easily be tuned for image sizes. This is in stark contrast
to baselines like PhotoNVS, DFM for which the computa-
tional costs quickly become too high and require infeasible
amounts of memory when trained on larger resolutions.

128px ‘ s/frame 256px ‘ s/frame
PhotoNVS 45.6 PhotoNVS 183
DFM 174 DFM -

MultiDiff 1.02 MultiDiff 1.94

Table 1. Comparison of the inference speed evaluated in sec-
onds per frame using FP32 on an NVIDIA A100-SXM4-80GB.
By jointly inferring multiple frames in parallel and using effi-
cient attention architecture, we achieve noticeably shorter infer-
ence times.

Fitting a NeRF Results for fitting a NeRF with Nerfacto
are shown in Fig. 7, yielding small pixel-level inconsisten-
cies with floating artifacts. As in ReconFusion [10], we use
distillation to obtain a cleaner representation (second row in
Fig. 7).
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Figure 7. NeReF fitting from 16 synthesized views. Row 1: Ner-
facto, row 2: Nerfacto + Distillation

D. Ablations

We show additional qualitative results ablating our design
decisions in Fig. 9. We note that training our model from
scratch ("MultiDiff no prior”) leads to over-smoothed re-
sults that do not closely follow the target trajectory. Fur-
thermore, we showcase the effect of using the image prior
but not initializing the weights of our correspondence at-
tention layer with the weights of the pre-trained video prior
(see "MultiDiff no vid.”): The results are overall less con-
sistent as e.g. the floor changes from carpet to wood. Our
method uses depth-based image warps to reproject the refer-
ence image to the target poses, providing strong cues about
the target views. We ablate the importance of this in Table 3
of the main table (see "MultiDiff no warp”) and show an ex-
ample of in Fig. 9. Without using the warps of the reference
image, our model is not able to faithfully follow the target
trajectory. As under strong camera motion, there is little to
no overlap with the reference image, we also learn an em-
bedding of the target pose and show the effect of removing
this information ("MultiDiff no pose”) in Fig. 9. Using
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Figure 5. TSED scores evaluated on RealEstate10K at a resolution of 128 x 128. The left chart shows the TSED evaluated at different
thresholds, on the right we plot the TSED scores over the pairs of frame indices along the trajectory.
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Figure 6. TSED scores evaluated on ScanNet at a resolution of 128 x 128. On the left, we show the TSED evaluated at different thresholds.
The right chart plots the TSED scores over the pairs of frame indices along the trajectory.

Short-term Long-term
PSNRT LPIPS| FID| KID||FID| KID| FVD| mTSED 1
MultiDiff + IronDepth 15.49 0.402 2836 0.005 | 3491 0.006 11572 0.797
MultiDiff + ZoeDepth 15.65 0.393 2590 0.004 | 30.15 0.006 105.9 0.855

MultiDiff + IronDepth | 15.05 0435  44.15 0.010 | 46.87 0.013 1183 0.503
MultiDiff + ZoeDepth | 15.00 0431 4384 0.010 | 47.11 0.013 1149 0.576

Datset Method

RE10K

ScanNet

Table 2. Qualitative comparison of using IronDepth trained on
ScanNetv?2 as alternative depth estimator evaluated 256 x 256 reso-
lution. We notice that the results are comparable for the short-term
metrics. For long-term evaluation, we observe that the non-metric
scaling of IronDepth leads to worse mTSED scores.

the additional pose embeddings provides additional guid-
ance about the target poses leading to better TSED scores.

In addition, we ablate the effect of using an alternative depth
estimator to ZoeDepth [3] in Tab. 2. For this, we use [ron-

Depth [1] pretrained on ScanNetv2 and report qualitative
results on RealEstate10K and ScanNet. While we observe
comparable results in image quality performance, we note
that using IronDepth leads to worse consistency scores. As
IronDepth does not provide estimates in metric scale, using
these depth estimates to warp the reference image leads to
less accurate conditional information. Ultimately, this re-
sults in lower consistency scores - see e.g., mT'SED that
decreases by ~ 6% on RealEstate10K and ~ 13% on Scan-
Net using IronDepth compared to using ZoeDepth.
Furthermore, we qualitatively show the effect of using
structured noise in Fig. 8 on a ScanNet test sequence. We
note that by structuring the noise using the depth estimates,
we obtain more realistic and consistent synthesis results.
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Figure 8. Additional qualitative comparison of applying structured
noise on a ScanNet test sequence. Applying structured noise leads
to more consistent and overall more realistic sampling results.
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Figure 9. Qualitative comparison of the different ablations of our method on a RealEstate 10K test sequence.
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