UFORecon: Generalizable Sparse-View Surface Reconstruction
from Arbitrary and UnFavOrable Sets

Supplementary Material

A. More Implementation Details

In this section, we provide more details on our model archi-
tectures not fully covered in the main paper.

Network details. Given multi-view images, we first use
the Feature Pyramid Network [27] to extract image features.
We set the number of channels of each level to 32, 16, and
8, respectively. Similar to TransMVSNet [9], we utilize a
sequence of attention blocks to extract cross-view features.
To build correlation frustums from each view, every source
image is considered as a reference image, while the other
images are considered as the source images. We use 4 atten-
tion blocks and we use multi-head attention with the number
of heads of 8.

Building Correlation Frustums. We build a cascaded cor-
relation frustum for each source view as Sec 4.3. We clarify
and elaborate more on the aggregation function (-) of the
correlation frustums here. For each level [ = 1,..., L, we
obtain pairwise feature correlation as follows:
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where - denotes a dot product and F'](izl denotes a warped
7-th source feature map to i-th source feature at depth hy-
pothesis d. Then we add all [V — 1 possible pairs to assign a
pixel-wise weight map with its maximum correlation along
the depth dimension as follows:
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Finally, we concatenate all depth hypotheses and add corre-
lation frustums of all source viewpoints:

N
C'(p) = Zci(p), (12)

where C’(p) € RY*4*m*% denotes the combined correla-
tion frustums from all source views. This combined cor-
relation frustum is regularized with 3D CNNs and output
V; € ReXdxhxw wwhich is used for estimating intermediate
depths. We further regularize V; to represent global feature
volume V; and we obtain the global feature vector via tri-
linear interpolation for each level [.

B. Detailed Description of Baseline Methods

In our research, we compared our method with four dif-
ferent types of surface reconstruction approaches across all

experiments. (1) The most directly comparable category
is generalizable implicit surface reconstruction [26, 28, 36,
48], where our method is included. These approaches as-
sume a very limited number of views and unseen scenes
during inference. (2) Generalizable neural rendering meth-
ods [4, 44, 52] also use a very limited number of views to
perform novel view synthesis from unseen scenes. These
methods learn geometry through volume density rather than
SDF, leading to ambiguity as they lack an explicit sur-
face definition. By applying thresholding on volume den-
sity and with Marching Cubes [29], geometry can be ob-
tained. (3) Neural implicit surface reconstruction [43, 51]
techniques extract accurate geometry from densely captured
multi-view images of a single scene via optimization. Since
these methods cannot generalize across multiple scenes,
per-scene optimization is required to estimate geometry, un-
like generalizable methods. (4) We compare with a conven-
tional matching-based method, COLMAP [38]. It utilizes
feature matching and triangulation from multiple images,
providing a baseline for comparing the effectiveness of neu-
ral network-based methods. (5) Additionally, we include
learning-based MVS methods [9, 49].

We only use generalizable implicit surface reconstruc-
tion methods for comparing view-combination generaliz-
ability in Table 2 as they outperform all the other ap-
proaches in terms of generalizable surface reconstruction.

C. More Information on the VC Score

Derivation from view selection score. In this section, we
provide more details on the View-Combination (VC) score
which is derived from the view selection score [49] as de-
scribed in Sec. 3. View selection score s(¢, j) indicates the
informativeness of a view pair between image ¢ and image
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where p is a common track in both view ¢ and j, while
¢; and c¢; denote the camera center of view ¢ and view j,
respectively. To obtain p, we use off-the-shelf reconstruc-
tion software, COLMAP [38]. In addition, G is a piecewise
Gaussian function that peaks at certain angle 6 as follows:



Set [ Method 24 37 40 55 63 65 69 8 97 105 106 110 114 118 122 Mean(CD)J
VolRecon [36] 120 259 156 108 143 192 1.11 148 142 105 1.19 138 074 123 127 1.38
Favorable | ReTR [26] 105 231 144 098 118 152 088 135 130 087 1.07 077 059 1.05 LI2 1.17
(VC: 1788) | Ours 076 205 131 08 112 118 074 117 111 071 088 058 054 086 0.99 0.99
Ours* 0.77 210 134 087 LI5S 116 071 125 117 081 090 057 051 086 097 101
VolRecon [36] 2.63 422 289 249 293 250 168 184 202 176 235 264 116 217 176 234
Normal ReTR [26] 206 372 254 251 175 211 149 157 174 135 1.88 205 100 174 148 1.93
(VC: 192) Ours 130 259 151 139 1.04 128 080 137 1.16 095 098 090 054 1.06 1.08 1.20
Ours* 102 221 142 1.00 123 124 072 136 103 077 086 084 047 091 0.96 1.07
VolRecon [36] 3.43 3.64 426 463 243 340 281 241 236 249 379 355 144 360 338 318
Unfavorable | ReTR [26] 300 398 378 422 222 293 300 251 224 236 236 392 1.63 283 3.07 2.94
(VC: 57) Ours 139 225 165 196 153 161 122 192 136 166 175 129 073 170 139 1.56
Ours* 131 200 141 136 124 158 106 144 137 099 145 096 058 134 1.09 1.28

Table 5. Quantitative results on different View-Combination (VC) score levels.

Each method’s performance is indicated across all

scans, with the mean Chamfer Distance (CD). An asterisk (*) indicates methods trained with the random set training strategy (Sec.4.6). We
use camera indices (23,24,33), (16,26,42), and (1,16,36) for Favorable, Normal, Unfavorable sets respectively. The corresponding average

VC scores are given in parentheses.

exp (—5-2—), ¢ < 0o,
G(6) = 0 (15)
exp (— 503 ), 6> 6,
where we set g = 5, 07 = 1, and 0o = 10 following

the original definition [49]. While the view selection score
originally calculates between two image pair, we define VC
score to represent a collective informativeness of a combi-
nation for the reconstruction by averaging the values for all
possible pairs as follows:

n— n
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where n denotes the number of source images.
VC score statistics. For more statistical information about

the VC score, we report the distribution of the VC score on
the DTU test dataset that we used for the experiments. We
average the VC scores of all test scenes for each combina-
tion. As shown in Figure 7, we evenly split the entire scores
into three groups, Favorable, Normal and Unfavorable. The
distribution is bell-shaped where the Normal set generally
has the highest frequencies. To reproduce the Table 1 and
Table 2, we use the combination with the camera indices
(23,24, 33) as a favorable set following the previous gen-
eralizable surface reconstruction protocols [26, 28, 36, 48],
and (1, 16, 36) for the unfavorable set.

D. Results on Various VC Score Levels

We have reported the reconstruction performance on both
Unfavorable (Table 2) and Favorable (Table 1) sets. Ad-
ditionally, we provide a comprehensive report on perfor-
mance across all VC score levels, which includes results for
the Normal set. It is important to note that, unless speci-
fied otherwise, we adhered to the same training protocol as
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Figure 7. Distribution of the View-Combination (VC) scores
on the test scenes. We visualize the statistical distribution of all
scenes to give a sense of how VC score is distributed. We average
all the scores of the test scenes given a camera view combination.
A curved line denotes a fitted Gaussian distribution to VC scores
in the log scale.

in previous studies [26, 36], utilizing only fixed sets of the
best view combinations.

As demonstrated in Table 5, our method consistently
shows superior performance across all VC levels and
scenes. Furthermore, when employing the random set strat-
egy for training (denoted as Ours* in Table 5), we observed
an enhanced performance, particularly in the Normal and
Unfavorable sets. This finding confirms the effectiveness
of the random set training strategy in improving generaliz-
ability across different view combinations.

E. Random Set Training on Baseline Methods

The random set training strategy, intuitively, should be ben-
eficial in reconstructing from Unfavorable sets, as it ex-
poses the network to a variety of view combinations dur-
ing training. Meanwhile, this approach might slightly de-



Method Favorable Unfavorable
VolRecon [36] 1.42 3.18
VolRecon* [36] 2.74 (+1.32,92%) 3.88 (+0.7, 22%)

ReTR [26] 1.17 2.94

ReTR* [26] 1.62 (+0.45, 38%)  2.88 (-0.06, 2%)
Ours 0.99 1.56
Ours* 1.01 (+0.02,2%) 1.28 (-0.28, 18%)

Table 6. Effect of employing the random set training. This table
shows the Chamfer Distance (CD) metrics across different meth-
ods, comparing the performance on both Favorable and Unfavor-
able sets. The lower CD represents the better results. (*) denote
the use of a random set training strategy (Sec. 4.6). The values
in parentheses represent the change in performance relative to the
standard training approach, with percentages indicating the rate of
degradation (+) or improvement (-).

grade the performance in Favorable sets compared to meth-
ods trained solely with fixed Favorable sets.

To assess the impact of random set training, we applied
this strategy to baseline methods [26, 36] and reported the
results in Table 6. In the case of VolRecon [36], random set
training resulted in suboptimal performance in both Favor-
able and Unfavorable test scenarios. We conjecture that the
introduction of arbitrary view combinations as inputs may
disrupt the training dynamics in VolRecon [36].

In contrast, for both ReTR [26] and our method, the
adoption of random set training improved performance in
Unfavorable scenarios, albeit at the expense of slightly di-
minished results in Favorable sets. Notably, our approach
with random set training (Ours*) exhibited a minor perfor-
mance degradation in Favorable sets (-2%), while achiev-
ing a significant enhancement in Unfavorable sets (+18%).
This improvement can be attributed to our framework’s abil-
ity to learn correlations among source images.

F. Impact of the Number of Views

We explored the effect of viewpoint density on our method
by varying the number of source views. As detailed in Ta-
ble 7, we observed a gradual improvement in performance
with increasing viewpoint density. Using more views allevi-
ates the challenges associated with reconstructing difficult
regions, such as those that are occluded or not commonly
shared across views.

G. Comparison on Depth Estimation.

MVS methods and other baseline methods experience sig-
nificant performance degradation in unfavorable settings
(Table 8), which are more susceptible to self-occlusion. The
correlation frustum is one of our key contributions (not in-
troduced in C2F2NeuS) to model global correlation among
input views, and the reconstruction transformer estimates

Number of Views VolRecon [36] Ours

2 1.72 1.15
3 1.38 1.00
4 1.35 0.97
5 1.33 0.96

Table 7. Effect of the number of views on reconstruction. The
table compares the Chamfer Distance for VolRecon [36] and our
method across varying number of viewpoints. As the number
of views increases, the reconstruction quality improves for both
methods, with our method showing superior performance in all
tested cases.

SDFs in a correlation-aware manner. We achieve robust per-
formance in handling arbitrary view combinations.

Favorable Unfavorable

Method <ImmtT <4mmT Abs.| <Imm7T <4mmT Abs. |
MVSNet [43] 29.95 72.33 13.62 5.82 19.72 72.74
TransMVSNet[8] 38.95 8291 13.53 6.21 15.60 161.71
VolRecon 43.60 82.53 7.12 3.93 11.43 185.95
ReTR [22] 51.95 85.06 5.41 10.83 19.26 58.02
Ours 54.80 86.69 6.09 51.30 65.14 17.02

Table 8. 3-Views Depth Map Comparison on DTU Datasets.

H. Comparative Ablation Study on Depth Su-
pervision

As shown in Table 9, our method works well even with-
out depth supervision. Especially in unfavorable sets, our
method without depth supervision outperforms the base-
lines even with depth supervision. Depth supervision in
SparseNeuS tends to result in over-smooth surfaces, which
is also reported in [36].

Favorable (CDJ) Unfavorable (CDJ)

Method w/lo Lg w/ Ly w/o Lg w/ Lg
SparseNeuS [24] 1.64 422 4.16 5.55
VolRecon [30] 2.06 1.38 8.65 3.18
ReTR [22] 1.45 1.17 441 2.94
Ours 1.26 0.99 2.26 1.56

Table 9. Ablation study of Depth Supervision (Lq).

I. Regarding Pracitcal Relevance.

Apparently, obtaining accurate camera poses from a sparse
set of images presents challenges. In response, a parallel
line of research has focused on estimating relative camera
poses from sparse views [6, 39], and it is anticipated that
we can apply these methods to obtain more accurate cam-
era poses from sparse, unfavorable set of views. Another
research direction explores reconstructing 3D in a pose-
free manner only using source images [10, 17], in which



case our proposed modeling of correlation across images
becomes even more meaningful. These approaches poten-
tially address concerns on obtaining camera poses. We be-
lieve that obtaining accurate geometry under pose-free set-
tings remains underdeveloped and seems to be a promising
future work.

J. More Qualitative Results

Lastly, we provide additional visual examples that highlight
the effectiveness of our method. We include all test scenes
except the scenes reported in the main paper. Similar to Fig-
ure 4, we include the results of the comparison with baseline
methods across Favorable, Normal, and Unfavorable sets.
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Figure 8. A qualitative results of reconstruction across various VC Levels. The numbers in parentheses denote the Chamfer Distance.
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Figure 9. A qualitative results of reconstruction across various VC Levels. The numbers in parentheses denote the Chamfer Distance.
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Figure 10. A qualitative results of reconstruction across various VC Levels. The numbers in parentheses denote the Chamfer Distance.
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Figure 11. A qualitative results of reconstruction across various VC Levels. The numbers in parentheses denote the Chamfer Distance.



