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A. Further Experimental Results
A.1 Additional Results on COIN and NIV

COIN. We present the full results of our method in com-
parison to several baseline approaches on the COIN dataset
across different planning horizons in Table S.1. While the
results demonstrate that our method outperforms the major-
ity of previous literature, it does not secure the top position
when considering small planning horizons (T=3 or T=4)
for the COIN dataset. This can be attributed to the fact
that the COIN dataset typically consists of only 3.9 actions
per video on average, a scenario where advanced sequence-
level procedural knowledge is not essential. The advan-
tage of our method becomes increasingly pronounced as the
planning horizon expands. With a larger planning horizon
(T=5), our method significantly outperforms the previous
state-of-the-art (SOTA) methods, achieving a performance
gain of 6.16 on the most strict metric, Success Rate (SR),
compared to SkipPlan [7]. Our method’s utilization of plan
recommendations from the Probabilistic Procedure Knowl-
edge Graph (P2KG) effectively reduces the complexity of
long-horizon planning.

NIV. Previous works did not provide results for the NIV
dataset concerning long-horizon procedural planning; in Ta-
ble S.2. we evaluate our model’s performance in compari-
son to the PDPP model [14] specifically on the NIV dataset
for long-horizon procedural planning (T=5 or T=6). (For
results regarding short-horizon planning, please refer to Ta-
ble 3 in the main paper.) Our model demonstrates superior
performance in terms of the SR, mAcc, and mIoU metrics.

A.2 Parameter Sensitivity Analysis on the Number
of Plan Recommendations

Our proposed method involves querying a probabilistic pro-
cedure knowledge graph; this process extracts the most
probable graph paths, which have specified start and end
steps. These paths are subsequently considered as recom-
mended procedural plans and are employed as additional
input conditions for the model, with the aim of improv-
ing its overall performance in procedure planning. Conse-
quently, the number of plan recommendations, denoted as
R in the main paper, emerges as a novel hyper-parameter in
our methodology.

We have conducted a parameter sensitivity analysis to
examine the effect of the number of paths selected from
the probabilistic procedure knowledge graph to be given as
conditions to the planning model on the procedure planning
performance. Table S.3 displays the parameter sensitivity
of our method with respect to R on the CrossTask dataset
for the planning horizon T=4. To maintain simplicity in
implementation, in cases where R exceeds one, we aggre-
gate the features of the top R graph paths through a linear
weighting process (i.e., weighted summation). This results
in consistent feature dimensions compared to when R=1.
The weighting scheme is as follows:
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where the weights of the graph paths, starting with the most
probable one, are provided above. The weights are empir-
ically determined to emphasize the top one probable path
by assigning it greater weight, and equal weights are dis-
tributed among the remaining graph paths.

Our method, with R=2, achieves the best results in SR
and mIoU (see Table S.3). In general, performance of our
method initially increases and then decreases as R contin-
ues to increase. The reason for larger values of R yield-



Models COIN (T=3) COIN (T=4) COIN (T=5)
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

Random < 0.01 < 0.01 2.47 < 0.01 < 0.01 2.32 - - -
Retrieval 4.38 17.40 32.06 2.71 14.29 36.97 - - -
DDN [4] 13.90 20.19 64.78 11.13 17.71 68.06 - - -
P3IV [15] 15.40 21.67 76.31 11.32 18.85 70.53 4.27 10.81 68.81
E3P [13] 19.57 31.42 84.95 13.59 26.72 84.72 - - -
PDPP [14] 19.42 43.44 50.03 13.67 42.58 49.84 13.02 43.36 50.96
SkipPlan [7] 23.65 47.12 78.44 16.04 43.19 77.07 9.90 38.99 76.93
Ours (R=2) 20.25 39.87 51.72 15.63 39.53 53.27 16.06 40.72 56.15

Table S.1. Performance of baselines and ours on the COIN dataset. Our method excels at handling challenging planning scenarios that
demand longer planning horizons (T ); with T=5, ours achieves a performance gain of 6.16 on the most strict metric, Success Rate (SR)

(a) (b)

Figure S.1. Probabilistic Procedure Knowledge Graphs (P2KG) around the nodes ‘peel banana’ and ‘add whipped cream’ respectively
up to a two-node depth. P2KG effectively captures the task-sharing steps, variability in transition probabilities between steps, implicit
temporal and causal relationships of steps, as well as the existence of numerous viable plans given an initial step and an end step

Models NIV (T=5) NIV (T=6)
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

PDPP [14] 18.95 37.26 87.50 14.94 41.02 93.70
Ours (R=2) 21.58 39.79 91.66 17.53 43.62 93.75

Table S.2. Performance of baselines and ours on the NIV
dataset. Our method demonstrates superior performance on all
metrics

ing lower SR is attributed to the influence of less prominent
paths being included in the conditions given to the planning
model. Further tuning of the weighting scheme could po-
tentially yield even more superior results which we leave
for future work.

Finally, a consistent trend of higher performance of R =
2 over R = 1 as T increases is not always guaranteed. In
Table 1 and Table 2 of the main paper, KEPP with R=2 has

Model SR↑ mAcc↑ mIoU↑

PDPP [14] 18.69 52.44 62.38
Ours (R=1) 20.38 55.54 64.03
Ours (R=2) 21.02 56.08 64.25
Ours (R=3) 20.22 56.19 63.15
Ours (R=4) 20.76 55.63 64.22
Ours (R=5) 20.37 55.43 63.93

Table S.3. Parameter sensitivity study on the CrossTask
dataset. Performance of our method initially increases and then
decreases as R continues to increase. An excessively large value
for R may lead to the inclusion of less prominent paths in the con-
ditions given to the planning model

a weaker performance than R = 1 when T is 5, but stronger
than R = 1 when T is 3, 4 or 6. This may arise from the
stochastic nature of the diffusion model and the variability



(a) Add Oil to Your Car task (b) Build Simple Floating Shelves task

(c) Make French Toast task (d) Make Meringue task

Figure S.2. Qualitative Analysis of Different Procedural Tasks. In the illustration, ‘P2KGC =1’ and ‘P2KGC =2’ indicates the first and
second paths obtained from the probabilistic procedure knowledge graph respectively

in the extent to which the top-2 graph plans offer additional
beneficial information across different values of T .

B. More Thorough Analysis

B.1 More Visualizations of the Probabilistic Proce-
dure Knowledge Graph

Figure S.1 (a) and (b) show the sub-graphs in our probabilis-
tic procedure knowledge graph (P2KG) around the nodes
‘peel banana’ and ‘add whipped cream’ up to a two-node
depth respectively. P2KG effectively captures the task-
sharing steps, variability in transition probabilities between
steps, implicit temporal and causal relationships of steps,
as well as the existence of numerous viable plans given an
initial step and an end step.

B.2 More Qualitative Results

Figure S.2 presents more qualitative results of our method
compared with PDPP [14] across a range of procedural
tasks, with a planning horizon set at T=4. In scenarios
depicted in Figure S.2 (a), (c), and (d), the PDPP model
erroneously predicts the initial or final steps based on the
given visual states, resulting in procedural planning fail-

ures. Our approach, however, incorporates a specialized
step model designed to accurately predict these crucial first
and last steps. Furthermore, Figure S.2 highlights how our
method benefits from the plan recommendations provided
by the probabilistic procedure knowledge graph. These rec-
ommendations offer invaluable insights into feasible plans
identified during training, thereby significantly enhancing
our method’s capability in procedure planning at test time.

B.3 Training Efficiency

Figure S.3 compares the training convergence of our plan-
ning model with PDPP [14]. We have plotted the loss
values across the training epochs and indicated the epoch
of convergence determined by the early stopping scheme.
Our model, with R=2 and R=1, converged at the 30th
and 40th epochs, respectively, while the previous state-of-
the-art method, PDPP, converged at the 60th epoch. Our
model exhibited significantly faster training convergence
compared to PDPP. The training efficiency of our method is
achieved by leveraging the probabilistic procedure knowl-
edge graph, which provides valuable context to facilitate the
model’s learning process.



Figure S.3. Training efficiency comparison between PDPP [14] and our model (KEPP). These training and validation profiles demon-
strate that our model exhibited significantly faster training convergence compared to PDPP. Our method with R=2 has faster convergence
compared to R=1. The arrows indicate the epochs of convergence determined by the early stopping scheme

(a) Train (b) Test (c) Ours (R=1)

Figure S.4. Step Transition Heatmaps on the CrossTask dataset of (a) the training set, (b) the testing set, and (c) procedure plan
predictions made by our method on the test set. The i-row-j-column depicts the probability of the transition from i-th action to j-th
action. Darker color indicates higher probability. Please refer to Section B.4 for details regarding task and action names

B.4 Analysis by the Step Transition Heatmap

Figure S.4 visualises the step transition matrices of the
ground-truth training procedure plans, ground-truth testing
procedure plans, and procedure plan predictions made by
our method with R=1 on the test set, for the ‘Change a
Tire’ task on the CrossTask dataset. The i-row-j-column

depicts the probability of the transition from i-th action
step to j-th action step. Darker color of the step transition
heatmap indicates higher probability. The steps depicted
in the heatmaps in order are: “brake on”:1, “get things
out”:2, “start loose”:3, “jack up”:4, “unscrew wheel”:5,
“withdraw wheel”:6, “put wheel”:7, “screw wheel”:8, “jack



(a) (b) (c)

Figure S.5. Failure Cases: (a) when repetitive smaller action sequences exist within the procedure plan, (b) when a1 and aT have not been
accurately predicted by the step model, and (c) when the start and end action steps are the same, and the probabilistic procedure knowledge
graph fails to provide valuable plan recommendations because it overly encodes the repetitive actions

down”:9, “tight wheel”:10, “put things back”:11, “remove
funnel”:12, “lower jack”:13, “put funnel”: 14, “wipe off
dipstick”: 15, “close cap”:16, “insert dipstick”:17, “pour
oil”:18, “pull out dipstick”:19, “raise jack”:20, “remove
cap”:21.

Out of the 21 actions illustrated, first 11 actions belong to
the ‘Change a Tire’ task while other actions are from sev-
eral other tasks but highly relevant to the ‘Change a Tire’
task (e.g., ‘raise jack”:20 and “lower jack”:13). When com-
paring Figure S.4 (a) and (b), the distributions of action
step transitions differ between training and testing. When
comparing Figure S.4 (b) and (c), our method, which uti-
lizes graph-structured training knowledge, reasonably pre-
dicts the step transition matrix on the test set.

B.5 Limitations and Failure Cases

Figure S.5 illustrates three distinct failure case patterns in
our model: (a) failure in prediction when repetitive smaller
action sequences exist within the procedure plan, (b) fail-
ure in accurately predicting a1 and aT from the step model,
and (c) failure in generating valuable probabilistic proce-
dure knowledge graph paths because the graph overly en-
codes the repetitive actions when the start and end action
steps are the same. Consistent with prior studies, cases in-
volving repetitive actions or action sequences continue to
pose challenges. Future studies could consider addressing
these challenging scenarios.

Below, we present analyses regarding how often are er-
rors caused by incorrect â1 and âT , or the graph. On
CrossTask♣ test data (T=4, R=2), 49.94% of predicted
plans have incorrect â1 or âT , and 63.23% of error instances
feature incorrect â1 or âT . If we use ground-truth a1 and aT
at inference, success rate improves from 21.02 into 36.58.
When analysing the errors of procedure knowledge graph,
in 34% of correctly predicted plans, the top-1 graph plan
mismatches the ground-truth plan, and in 87% of error in-
stances, the top-1 graph plan mismatches the ground-truth
plan.

The effectiveness of our method is constrained when pro-

cedural knowledge is not required. This is because proce-
dural knowledge is structural information about procedures,
often considered as sequential knowledge about steps in
procedures [16], and KEPP uses graph paths as contextual
plan recommendations (and graph paths can provide valu-
able procedural knowledge), scenarios with short plans re-
strict the efficacy of KEPP, which specializes in long plan-
ning horizons–the more challenging cases. KEPP’s perfor-
mance hinges on accurate predictions of â1 and âT when T
is small, less on the graph for planning; e.g., with T=3, the
graph provides only the middle action, and thus procedural
knowledge plays a minor role.

The analyses above imply that performance can be
greatly boosted with more precise â1 and âT , and having
multiple plan recommendations is advantageous, as the top
graph path may not always align. The failure case analyses
also highlight the limitations of our approach. Our method
depends on the precise prediction of both the initial and fi-
nal steps by the step model, and it performs more effectively
when the probabilistic procedure knowledge graph can offer
valuable contextual information.

B.6 Ablations with Flawless Step Model

The table S.4 points out the success rate, mAcc, and mIoU
of our plan model for different horizons when the ground
truth (GT) a1 and aT are used for training and testing the
model. This provides an accurate depiction of the accu-
racy of the plans generated when the step (video perception)
model generates perfect start and end steps.

B.7 Zero-shot Planning with the P2KG

We conduct an experiment by using P2KG for proce-
dure planning as a parameter-free zero-shot approach on
CrossTask♣ (R=1 since we directly use top graph plan).
The success rates are 22.58, 17.74, 10.92, and 5.92 respec-
tively for T=3,4,5,6; and 56.51, 32.40, 19.63, and 12.16
respectively if we assume a flawless video model.

This P2KG-based zero-shot approach could achieve su-
perior performance than current SOTA–for example, Skip-



Plan’s results are 28.85, 15.56, 8.55, and 5.12, respectively;
see Table 1 and Table 2 in the main paper.

B.8 Further Discussions

How can KEPP handle novel tasks and scale? As men-
tioned in Sec.4 of the paper, there are trade-offs between
using the LLM-generated recommendations and the P2KG
recommendations. For instance, the P2KG recommenda-
tions are constrained by the training data, limiting their ap-
plicability to unseen procedural activities, whereas LLMs
generally better generalize to these unseen activities. Nev-
ertheless, it is possible for our proposed method to scale
for internet-scale videos given an action list. One could ad-
dress it by enumerating all admissible actions and mapping
the KEPP’s output actions to the most semantically-similar
admissible actions. KEPP generalizes and scales better with
a larger vocabulary in its graph, making internet-scale data
beneficial for its development.
Why adapt a diffusion model for step recognition and
planning? In the implementation of KEPP, we adapt
PDPP [14] which is a diffusion model as the step model
and the planning model. We outline our motivations as fol-
lows. First, a diffusion based procedure planning method
avoids error propagation seen in non-diffusion-based prior
models [3, 4, 11]. Secondly, it can be trained without com-
plex multi-objective training processes [7, 13, 15]. Third,
randomness is involved both for training and sampling in
a diffusion model, which is helpful to model the uncertain
action sequences for planning [14]. Furthermore, it is con-
venient to apply conditional diffusion and projection oper-
ations to mitigate uncertainty that might misguide learning.
Finally, the learned weights of the diffusion step and plan-
ning models could mutually benefit (e.g., initialize the plan-
ning model with the learned step model weights, or fine-
tune the step model with the planning model weights). Fu-
ture work can consider transfer the learned weights of the
diffusion step model towards the diffusion planning model.

C. Method and Implementation Details
Our code and trained models are publicly available.

C.1 Diffusion Model Details

Standard Diffusion Model. A standard denoising diffu-
sion probabilistic model [6] tackles data generation by es-
tablishing the data distribution p (x0) through a denoising
Markov chain over variables {xN . . . x0}, starting with xN

as a Gaussian random distribution.
In the forward diffusion phase, Gaussian noise ϵ ∼

N (0, I) is progressively added to the initial, unaltered data
x0, transforming it into a Gaussian random distribution.
Each noise addition step is mathematically defined as:

xn =
√
ᾱnx0 + ϵ

√
1− ᾱn (1)

q (xn|xn−1) = N
(
xn;

√
1− βnxn−1, βnI

)
(2)

where ᾱn =
∏n

s=1 (1− βs) represents the noise magni-
tude, and {βn ∈ (0, 1)}Nn=1 denotes the pre-defined ratio of
Gaussian noise added in each step.

Conversely, the reverse denoising process transforms
Gaussian noise back into a sample. Each denoising step
is mathematically defined as:

pθ (xn−1|xn) = N (xn−1;µθ (xn, n) ,Σθ (xn, n)) (3)

where µθ is parameterized as a learnable noise prediction
model ϵθ (xn, n), optimized using a mean squared error
(MSE) loss L = ∥ϵ− ϵθ (xn, n)∥2, and Σθ is calculated us-
ing {βn}Nn=1. During training, the model selects a diffusion
step n ∈ [1, N ], calculates xn via Eq. 1, then the learnable
model estimates the noise and computes the loss based on
the actual noise added at step n. After training, the diffusion
model generates data akin to x0 by iteratively applying the
denoising process, starting from random Gaussian noise.
Conditioned Projected Diffusion Model. As we incorpo-
rate conditional information into the data distribution, these
conditional guides can be altered during the denoising pro-
cess. However, modifying these conditions can lead to in-
correct guidance for the learning process, rendering condi-
tional guides ineffective. To tackle this issue, the Condi-
tioned Projected Diffusion Model has been introduced to
ensure that guided information remains unaffected during
denoising. In this approach, Wang et al. [14] introduce a
condition projection operation within the learning process.
Specifically, they enforce that visual observation conditions
and additional condition dimensions remain unchanged dur-
ing both training and inference by assigning them to their
initial values. We have adapted their Conditioned Projected
Diffusion Model as the architecture for both our step model
and planning model in KEPP.

C.2 Implementation of KEPP

The step model for a1 and aT predictions and the plan-
ning model for procedure plan full-sequence prediction are
trained separately. As mentioned in the main paper, for the
step model, intermediate actions are padded in order to ac-
curately predict a1 and aT . We use a U-Net based Con-
ditioned Projected Diffusion Model [14] fθ(xn, n) as the
learnable model architecture for both of the step model and
the planning model, and the training loss is:

L =

N∑
n=1

(fθ(xn, n)− x0)
2 (4)

where x0 denotes the initial, unaltered input and N denotes
the total number of diffusion steps.



Model T=3 T=4 T=5 T=6
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

Ours 33.38 60.79 63.89 21.02 56.08 64.15 12.74 51.23 63.16 9.23 50.78 65.56
Ours with GT a1, aT 57.50 84.85 80.75 37.17 77.01 78.58 20.51 67.66 73.97 15.08 65.27 74.37

Table S.4. Comparison of the performance when ground truth (GT) a1 and aT are used for training and testing the planning model in our
KEPP system (R=2) on the CrossTask♣ dataset

In line with the approach taken in [14], given that a1
and aT are the most relevant actions for the provided input
visual states, we have modified the training loss by imple-
menting a weighted MSE loss. This involves multiplying
the loss by a weight matrix to give more emphasis to the
predictions of a1 and aT . For the step model, we have cho-
sen a weight of 10 for both a1 and aT . In the case of the
planning model, we have assigned a weight of 5 to a1 and
aT because the condition dimensions of intermediate steps
in the probabilistic procedure knowledge graph path has a
more significant impact on generating the full action step
sequence. The default value in this weight matrix is 1.

The batch size is 256 for all the experiments. Our train-
ing regimen incorporates a linear warm-up strategy that is
tailored to suit the varying scales of different datasets. For
the results of models utilizing the precomputed features
provided in CrossTask, we use 200 for the diffusion step
and train the progress through a total of 12,000 training
steps. The learning rate is gradually escalated to reach 8 ×
10−4 over the initial 4,000 steps. Subsequent to this phase,
we implement a learning rate reduction to 4 × 10−4 when
reaching the 10,000th step.

When working with the S3D network-extracted features
on the CrossTask dataset, the model similarly starts with a
diffusion step of 200 but extends the training duration to
24,000 steps. The learning rate here ascends linearly to 5
× 10−4 within the first 4,000 steps, followed by a decay
factor of 0.5 applied sequentially at the 10,000th, 16,000th,
and 22,000th steps.

The NIV dataset, given its smaller size, necessitates a
shorter training cycle of 6,500 steps, starting from a diffu-
sion step of 50. We increase the learning rate linearly to 3
× 10−4 up until step 4,500, then introduce a decay by 0.5 at
step 6,000.

For the COIN dataset, which is significantly larger in
scale, the model undergoes an extended training sequence
of 160,000 steps with the diffusion set at 200. Here, the
learning rate experiences a linear surge to 1 × 10−5 within
the first 4,000 steps. We implement a decay rate of 0.5 at
the 14,000- and 24,000-step marks. After this point, the
learning rate is maintained at a constant 2.5 × 10−6 for the
remainder of the training process.

When obtaining mIoU, for CrossTask dataset we com-
pute IoU on every single action sequence and calculates the

average of these IoUs to obtain mean IoU similar to method
used in [14]. For COIN and NIV datasets, we compute
mIoU on every mini-batch (batch size = 256) and calcu-
late the average as the result similar to the approach used in
[15].

In the scenario where paths from the probabilistic pro-
cedure knowledge graph are available between â1 and âT
but it does not match the desired number of paths (R), then
repetition of already available paths are considered to meet
the desired path requirement. In scenarios where the com-
bination of â1 and âT does not result in the inclusion of a
path from the probabilistic procedure knowledge graph, the
graph paths (P ) are formulated as follows:

Path Variations (L) = [[[â1]
T−M .[âT ]

M ], [[â1]
M .[âT ]

T−M ]]

Generated Paths (P ) = [L[i mod len(L)] for i in range (R)]

where T is the planning horizon, M = T//2, and path
variations (L) are the two types of possible combinations
of â1 and âT . For example if horizon (T) equals 5, then
the path variations (L) possible are [[â1, â1, â1, âT , âT ],
[â1, â1, âT , âT , âT ]]. So if one path (R = 1) is required
as the condition for the planning model, generated path is
[â1, â1, â1, âT , âT ], and if 2 paths are required (R = 2)
as the condition for the planning model, generated paths are
[â1, â1, â1, âT , âT ], and [â1, â1, âT , âT , âT ], and if 3
paths are required (R = 3) as the condition for the planning
model, generated paths are [â1, â1, â1, âT , âT ], [â1, â1, âT ,
âT , âT ], and [â1, â1, â1, âT , âT ] likewise. The generated
paths (P ) are then aggregated through linear weighting into
a single path to be given to the planning model as mentioned
in Section A.2.

C.3 Implementation of Ablations

Ablation on the probabilistic procedure knowledge
graph. When the probabilistic procedure knowledge graph
is not included as a condition, the model simplifies only to
the planning model, ignoring the step model for generating
â1 and âT . In this scenario, the planning model generates
the action sequences using a diffusion process conditioned
solely on the start and end visual observations.
Plan recommendations provided by the probabilistic
procedure knowledge graph and LLM. To enhance the
action prediction, we could incorporate LLM generated ac-
tion sequence as a condition to our planning diffusion model



as shown in Table 6 in the main paper. To generate the
LLM action sequence we use the ‘llama-2-13b-chat’ or the
‘llama-2-70b-chat’ model and query the model with the
prompt:

“In the multi-step task that I am
going to perform, I know {total steps}
steps are required, the first step
is {start action}, and the last step
is {end action} and I need to go from
{start action} to {end action}. Can you
tell me the {total steps} steps in the
form "Step 1, ..., Step {total steps}"
so that I can follow in order to
complete this {total steps}-step
task? Note that repetitive steps are
possible”.

In the above text prompt, ‘total steps’ indicates the plan-
ning horizon, while ‘start action’ denotes the step model-
predicted start action â1 and ‘end action’ denotes the step
model-predicted end action âT . For a single [â1, âT ] pair
occurring in the training or testing phase, we query the LLM
three times and obtain the optimal action for each step in
the sequence by finding the action with the highest occur-
rence. Then, the optimal sequence is queried back into the
LLM for post-processing to check the realistic nature of the
generated action sequence. The text prompt used for post-
processing verification is as follows:

“Is the following action sequence
possible? Note that repetitive steps
are possible. Please answer only "Yes"
or "No": {steps}”.

Here, ‘{steps}’ denotes the the generated steps from the
first prompt. We then map the action steps generated from
the LLM to the step vocabulary space of the given dataset.
Specifically, the generated action steps from the LLM, as
well as all of the possible action steps from the dataset,
are embedded into a vector space utilizing the ‘bert-base-
uncased’ model. For each action in the LLM-generated se-
quence, its semantically closest action step from the dataset
is found in the vector space using the K-nearest neighbor
(K=1) approach. The resulting generated action sequence is
given as an additional input condition to the planning model
similar to the P2KG condition.

In the situation where both the P2KG and LLM condi-
tions are used for the planning model, the conditional vi-
sual states, LLM recommendation and the procedure plan
recommendation from the P2KG are concatenated with the
actions along the action feature dimension, forming a multi-
dimensional array:

(5) where ãi denotes the action from the P2KG at ith step
and a∗i denotes the action generated from LLM at ith step.
Probabilistic procedure knowledge graph (P2KG)
and Frequency-based procedure knowledge graph
(PKG). The frequency-based procedure knowledge graph
(PKG) performs min-max normailization for the entire
graph, and the optimal path between two nodes is the
maximum weighted path. The path weight is calculated
by summing all the individual edge weights between
the two nodes. The probabilistic procedure knowledge
graph (P2KG) has undergone output edge normalization,
where the summation of probabilities of all the output
paths from a node is 1. For example, if a node has
four output edges (self-loop edges are also considered
as output edges), and the weights along the edges are
w1, w2, w3, w4, then the probability of each edge is:

w1
w1+w2+w3+w4

, w2
w1+w2+w3+w4

, w3
w1+w2+w3+w4

, w4
w1+w2+w3+w4

respectively. The process of obtaining the highest probable
path between two nodes is explained in Section 3.2.3 of the
main paper.

C.4 Datasets and Evaluation Metrics

In our evaluation, we employed datasets from three sources:
CrossTask [17], COIN [12], and the Narrated Instructional
Videos (NIV) [2]. The CrossTask dataset comprises 2,750
video clips, each representing one of 18 distinct tasks, and
features an average of 7.6 ± 4.4 (mean±std) actions per
clip. The COIN dataset is more extensive, including 11,827
videos across 180 tasks, with an average of 3.9±2.4 actions
per video. Lastly, the NIV dataset, though smaller in scale,
includes 150 videos that capture 5 everyday tasks, with a
higher density of actions, averaging 8.8 ± 2.8 actions per
video. We randomly select 70% data for training and 30%
for testing as previous work [3, 14, 15].

Our study employs mean intersection over union
(mIoU), mean accuracy (mAcc), and success rate (SR) as
our evaluation metrics. mIoU evaluates the overlap between
the predicted actions with the ground-truth actions using
IoU by regarding them as two action sets. mAcc is quanti-
fied as the average of the precise correspondences between
the predicted actions and their respective ground truth coun-
terparts at corresponding time steps. Thus, mAcc counts the
order of actions, and is stricter than mIoU. SR is the most
stringent metric, considering a sequence to be successful
solely if it exhibits a perfect match with the ground truth
action sequence throughout.

C.5 Baselines

In the current study, we benchmark our proposed approach
against several established state-of-the-art methods to con-



duct a comprehensive evaluation. Below, we describe the
methods that serve as our baseline comparisons.

Random Strategy: This naive approach involves the
stochastic selection of actions from the set of possibilities
within the dataset to generate procedure plans.

Retrieval-based Technique: Upon receiving the vi-
sual observational inputs, this method employs a nearest-
neighbour algorithm, leveraging the least visual feature
space distance within the training corpus to extract a cor-
responding sequence of actions as the procedural blueprint.

WLTDO [5] [‘CVPR 2018’]: Implemented via a recur-
rent neural network (RNN), this method sequentially fore-
casts the necessary actions based on the supplied pair of
observations.

UAAA [1] [‘ICCV workshop 2019’]: Standing for a
two-phased strategy, UAAA integrates an RNN with a Hid-
den Markov Model (HMM) to autoregressively estimate the
sequence of actions.

UPN [10] [‘ICML 2018’]: This path-planning algorithm
is tailored for the physical realm and acquires a plannable
representational form for making informed predictions.

DDN [4] [‘ECCV 2020’]: The DDN framework operates
as a dual-branch autoregressive model, honing in on an ab-
stracted representation of action sequences to anticipate the
transitions between states and actions in the feature space.

PlaTe [11] [‘RA-L 2022’]: An advancement of DDN,
the PlaTe model incorporates transformer modules within
its dual-branch architecture to facilitate prediction.

Ext-GAIL [3] [‘ICCV 2021’]: Ext-GAIL addresses pro-
cedural planning through reinforcement learning and de-
composes the problem into a dual-stage challenge. The ini-
tial stage in Ext-GAIL is designed to yield time-invariant
contextual information for the subsequent planning phase.

P3IV [15] [‘CVPR 2022’]: A transformative single-
branch model, P3IV enriches its structure with a mutable
memory repository and an additional generative adversarial
network. It is capable of concurrently predicting the entire
action sequence during the inference stage.

PDPP [14] [‘CVPR 2023’]: PDPP conceptualizes the
task of procedure planning in instructional videos as anal-
ogous to fitting a probabilistic distribution. Echoing the
P3IV, PDPP employs a holistic approach during the infer-
ence stage by forecasting the entire sequence of action steps
concurrently.

SkipPlan [7] [‘ICCV 2023’]: Consider procedure plan-
ning as a mathematical chain problem. This model decom-
poses relatively long chains into multiple short sub-chains
by bypassing unreliable intermediate actions. This transfers
long and complex sequence functions into short but reliable
ones.

E3P [13] [‘ICCV 2023’]: This uses procedural task (re-
ferred as ‘event’ in [13]) information for procedure planning
by encoding task information into the sequential modeling

process. E3P infers the task information from the observed
states and then plans out actions based on both the states
and the predicted task/event.
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