Active Domain Adaptation with False Negative Prediction
for Object Detection

Supplementary Material

S1. Details of Formulation

We detail the formulation described in Section 3.

Notatlon We have a set of labeled source data Dg =
{(xF,y7)}5, and unlabeled target data Dy = {2 }V7,
where x; IRWXH %3 is the i-th image of width W and

height H in a dataset, and y; = {b; ;,¢; ; };V:b‘i"l consists
of the j-th bounding box coordinates b; ; € {x,y,w,h}
and category index ¢; ; € {1, ..., NC}. Dr consists of a set
of labeled target data D7 = {(zF7,y~7) V5T and un-
labeled target data Dy = {wUT}N UT  Given Dpr = 0
at the beginning of training, we sample images from Dy
that maximize performance through an acquisition function
within a labeling budget. Then, we annotate these images
and incorporate them into Dy .

S1.1. Model Initialization

Given the detection model and domain discriminator pa-
rameters 0, and ¢, respectively, of the student model, the
objective loss function is defined as follows:
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minmax L;ni =

s s

where A is the weight of L 4,. Ls

sup 18 the supervised loss

in the source domain defined as follows:
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where {z’, ¢’} is the augmented sample by strong augmen-
tation proposed in [2]. Lg.; is the detection loss defined as
follows:
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where N}, is the number of bounding boxes in y;. £

and L777 are the classification loss and regression loss, re-

spectively, in the region proposal network (RPN). £7?% and

cls

/::g; are the classification loss and regression loss, respec-

tively, in the region of interest (Rol) head.
The adversarial loss L4, is defined as follows:
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where F,,,. and D are the backbone of the detection model
and the domain discriminator, respectively.

S1.2. Active Learning based on False Negative
S1.2.1 False Negative Prediction Module

The FNPM is trained to minimize errors using the loss func-
tion, which is defined as follows:
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where G, v, and Fjeqq are the FNPM, its parameters, and
the head of the detection model, respectively.

S1.2.2 Uncertainty Estimation with MCDropout

We incorporate the MCDropout layer into the detection
head and reformulate the predicted bounding box coordi-
nates b; and class probabilities p; as follows:

{bi(¢),

where Ber(n) is Bernoulli distribution of dropout rate 1.

We use these means (b7%¢%, p7ean) as the prediction
results considering model perturbations and the variance
of the predicted coordinates b?*" as the localization uncer-

tainty defined as follows:

ﬁ1(§)} = Fhead(mi; 0757 6)7 where £ ~ BET(W), (56)
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where M is the number of inferences and Bzm ~ b;(§),
ﬁi,m ~ ﬁz(g)
S1.3. Semi-Supervised Domain Adaptation

The objective loss function is defined as follows:

- Acfup + ESL',TP + L"unsup + A['advy (Sg)
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where £SL£, is the supervised loss in the labeled target do-
main, similar to Eq. (S2). Lunsup is the unsupervised loss

in the unlabeled target domain defined as follows:
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where Lpp0z (+) is the indicator function defined as follows:

1, if byan. <

ke{z,y,w,h} (Sll)
0, otherwise,

]Ibboz(i)g,[;'r) = {

where +y is the threshold for using pseudo-labels with vari-
ance less than a certain value. I, f(-) is the indicator func-
tion defined as follows:

if max(pye") > 7 (S12)
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conf (P 0, otherwise,

where 7 is the threshold for using pseudo-labels with a
maximum class probability above a specific value. Pseudo-
labels are defined as follows:

e argmaz(p; ;") (S13)
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Finally, after the student model is updated once by
Eq. (S9), the teacher model is updated by using the expo-
nential moving average (EMA) [12]:

O < by + (1 —a)ls, ¢ « ads +
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where « is the update ratio.

S2. Additional Results

S2.1. Comparison with Domain Adaptation Meth-
ods for Each Category

Tables S1 and S2 show the comparison of accuracies for
each category for Cityscapes — Foggy Cityscapes and
Cityscapes — BDD100Kk, respectively, in Table 1. The
value in the table are the average precision at IToU=0.5.

In particular, in the bus column of Table S2, our pro-
posed method improves the accuracy by 14.3 to 17.8 pt from
AADA. This is because the accuracy of a minority of cat-
egories is reflected as undetectability, and the active sam-
pling focuses on images that contain objects in those cate-
gories. In Table S1, the accuracy of our proposed method is
already higher than that of Oracle, and the accuracy of our
proposed method is competitive with the previous method.

S2.2. Comparison with Active Sampling Strategies
for Each Category

Table S3 shows the comparison of accuracies for each cate-
gory for Cityscapes — BDD100k in Table 2. The addition
of sf™ improves accuracy of person and car and samples
more informative images due to the effectiveness of unde-
tectability.

S2.2.1 Analysis of Hyper-Parameters

Table S4 shows the comparison of performance at value of
dropout rate n and threshold value ~« of pseudo-label with
variance in the KITTI — Cityscapes scenario. Changing
71 has little effect on accuracy. In addition, if v is set too
small, training becomes unstable. Therefore, we set ) to 0.1
and v t0 0.1.

S2.2.2 Visualization of Active Sampling

Figure S1 shows top 10 images sampled from the target do-
main at round 1 in the Cityscapes — BDD100k scenario.
We compare the images sampled by the AADA method with
those sampled by our proposed method. In AADA, im-
ages with poor visibility due to rain on the glass in rainy
weather are selected. These images are expected to be hard
to detect, however this situation rarely occurs in the target
domain, and the images are not effective for training. In
contrast, our proposed method can sample more important
images with high detection difficulty and high frequency of
occurrence. In particular, images containing buses with low
accuracy have been selected and are effective for training.

Figure S2 shows statistical comparison of sampled ob-
jects and attributes in the Cityscapes — BDD100k sce-
nario. As shown in Figure S2a, in terms of the total num-
ber of objects in the selected images, our proposed method
included a thousand more objects than AADA. Therefore,
our proposed method selects more informative images. In
Figure S2b, AADA samples the same amount of images in
rainy as in clear weather. In contrast, our proposed method
samples mainly clear weather, while other weather condi-
tions are sampled evenly.

S2.2.3 Computational Cost

Table S5 shows a comparison of the time required for train-
ing the detection model, training the FNPM, and active sam-
pling. The GPU hours are measured on the NVIDIA V100
GPU. Our proposed method requires additional time to train
the FNPM before active sampling and additional time to in-
fer the FNPM model during active sampling. The FNPM
does not affect the training time of the detection model be-
cause it is trained before active sampling. The additional
time during the FNPM inference is negligible, and the total
additional time is within 10%.

S3. Limitation

Our proposed method was evaluated on the in-vehicle cam-
era dataset, although it has not been tested on other datasets.
We will experiment with adaptation scenarios from real im-
ages to illustrative images. Although we evaluated our pro-
posed method on a two-stage detector, it can also be applied



Table S1. Comparison of state-of-the-art UDA and ADA methods for each category in the Cityscapes — Foggy Cityscapes scenario.
The best and the second best accuracies are highlighted in bold.

Methods Reference  Architecture ~ Backbone person rider car truck bus train motor bike mAP
Source-only — Faster-RCNN  VGG16 20.6 239 246 6.0 13.1 5.0 9.5 213 155
DA-Faster [3] CVPR’18 250 31.0 405 221 353 202 200 27.1 276
SWDA [10] CVPR’19 29.9 423 435 245 362 326 30.0 353 343
PT [2] ICML22 40.2 48.8 59.7 30.7 S51.8 30.6 354 445 427
AT [9] CVPR’22 455 551 543 350 563 543 385 519 509
UDA MGADA [15] CVPR’22  Faster-RCNN  VGG16 439 49.6 60.6 29.6 50.7 390 383 428 443
CMT [1] CVPR’23 459 557 637 39.6 660 388 414 512 503
CSDA [4] ICCV’23 43.1 584 447 50.0 333 373 429 505 450
NSA-UDA [16] ICCV’23 50.2 60.1 67.7 374 574 469 473 543 52.7
Ours (0%) — 50.8 565 675 28.1 58.1 556 443 558 520
AADAT [11] (1%) e — 40.0 438 56.0 257 385 30.6 263 366 372
AADAT (5%) . 42.8 47.1 58.6 21.7 444 226 315 397 385
ADA 6 e (1%) - Faster-RCNN - VGGI6 567 555 670 352 572 538 435 542 522
Ours (5%) 50.7 56.2 682 337 612 502 405 535 51.8
Oracle — Faster-RCNN  VGG16 46.4 50.7 656 349 53,6 386 351 46.6 463

Table S2. Comparison of state-of-the-art UDA and ADA methods for each category in the Cityscapes — BDD100k scenario. The
best and the second best accuracies are highlighted in bold.

Methods Reference  Architecture  Backbone person rider car truck bus motor bike mAP
Source-only — FasterRCNN ~ VGG16 379 284 566 134 152 173 206 268
PDA [6] WACV"20 37.6 329 518 193 237 161 253 295
ICR-CCR [14] CVPR'20 314 313 463 195 189 173 238 269
SFOD [8] AAAI'21 324 326 504 206 234 189 250 29.0
ILLUME [7] WACV'22 332 205 478 208 338 244 267 296
UDA " 1pp 5] cvpryy TOSErRONN - VGGI6 590 389 539 241 255 245 288 336
PT [2] ICML'22 - - - - = 349
NSA-UDA [16] 1CCV'23 - - - - - — — 355
Ours (0%) — 501 383 671 283 58 283 363 363
AADAT (%) oo 457 317 608 198 236 202 300 33.1
AADAT (5%) 498 351 656 352 372 296 346 410
APA - Ours (19) _ PastlerROANDVGGI6 549 419 705 363 414 308 402 451
Ours (5%) 571 466 722 476 515 380 432 509
Oracle — FasterRCNN  VGG16 545 449 739 57.6 544 381 430 523

to an one-stage detector. In the future, we will also evaluate
the effectiveness of an one-stage detector.
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