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S1. Details of Formulation
We detail the formulation described in Section 3.
Notation. We have a set of labeled source data DS =
{(xS

i ,y
S
i )}

NS
i=1 and unlabeled target data DT = {xT

i }
NT
i=1,

where xi ∈ R
W×H×3 is the i-th image of width W and

height H in a dataset, and yi = {bi,j , ci,j}
Ni

bbox
j=1 consists

of the j-th bounding box coordinates bi,j ∈ {x, y, w, h}
and category index ci,j ∈ {1, ..., Nc}. DT consists of a set
of labeled target data DLT = {(xLT

i ,yLT
i )}NLT

i=1 and un-
labeled target data DUT = {xUT

i }
NUT
i=1 . Given DLT = ∅

at the beginning of training, we sample images from DUT

that maximize performance through an acquisition function
within a labeling budget. Then, we annotate these images
and incorporate them into DLT .

S1.1. Model Initialization

Given the detection model and domain discriminator pa-
rameters θs and ϕs, respectively, of the student model, the
objective loss function is defined as follows:

min
θs

max
ϕs

Linit = LS
sup + λLadv, (S1)

where λ is the weight of Ladv . LS
sup is the supervised loss

in the source domain defined as follows:

LS
sup =

1

NS

NS∑
i=1

Ldet(x
′S
i ,y′S

i ), (S2)

where {x′,y′} is the augmented sample by strong augmen-
tation proposed in [2]. Ldet is the detection loss defined as
follows:

Ldet(xi,yi) =
1

N i
bbox

Ni
bbox∑
j=1

(Lrpn
cls (xi, ci,j) + Lrpn

reg (xi, bi,j)

+Lroi
cls (xi, ci,j) + Lroi

reg(xi, bi,j)),
(S3)

where N i
bbox is the number of bounding boxes in yi. Lrpn

cls

and Lrpn
reg are the classification loss and regression loss, re-

spectively, in the region proposal network (RPN). Lroi
cls and

Lroi
reg are the classification loss and regression loss, respec-

tively, in the region of interest (RoI) head.
The adversarial loss Ladv is defined as follows:

Ladv =− 1

NS

NS∑
i=1

log(1−D(Fenc(x
S
i ; θs);ϕs))

− 1

NT

NT∑
i=1

logD(Fenc(x
T
i ; θs);ϕs),

(S4)

where Fenc and D are the backbone of the detection model
and the domain discriminator, respectively.

S1.2. Active Learning based on False Negative

S1.2.1 False Negative Prediction Module

The FNPM is trained to minimize errors using the loss func-
tion, which is defined as follows:

Lfn =
1

NS

NS∑
i=1

(G(Fenc(x
S
i ; θt);ψ)−FN (Fhead(x

S
i ; θt),y

S
i ))

2

+
1

NLT

NLT∑
i=1

(G(Fenc(x
LT
i ; θt);ψ)−FN (Fhead(x

LT
i ; θt),y

LT
i ))2,

(S5)

where G, ψ, and Fhead are the FNPM, its parameters, and
the head of the detection model, respectively.

S1.2.2 Uncertainty Estimation with MCDropout

We incorporate the MCDropout layer into the detection
head and reformulate the predicted bounding box coordi-
nates b̂i and class probabilities p̂i as follows:

{b̂i(ξ), p̂i(ξ)} = Fhead(xi; θt, ξ), where ξ ∼ Ber(η), (S6)

where Ber(η) is Bernoulli distribution of dropout rate η.
We use these means (b̂mean

i , p̂mean
i ) as the prediction

results considering model perturbations and the variance
of the predicted coordinates b̂vari as the localization uncer-
tainty defined as follows:

b̂mean
i =

1

M

M∑
m=1

b̂i,m, p̂mean
i =

1

M

M∑
m=1

p̂i,m, (S7)

b̂vari =
1

M − 1

M∑
m=1

(b̂i,m − b̂mean
i )2, (S8)

where M is the number of inferences and b̂i,m ∼ b̂i(ξ),
p̂i,m ∼ p̂i(ξ).

S1.3. Semi-Supervised Domain Adaptation

The objective loss function is defined as follows:

min
θs

max
ϕs

Ltotal = LS
sup + LLT

sup + Lunsup + λLadv, (S9)

where LLT
sup is the supervised loss in the labeled target do-

main, similar to Eq. (S2). Lunsup is the unsupervised loss
in the unlabeled target domain defined as follows:



Lunsup =
1

NUT

NUT∑
i=1

1

N i
bbox

Ni
bbox∑
j=1

Ibbox(b̂
var
i,j )Iconf (p̂

mean
i,j )

[Lrpn
cls (x′UT

i , cPL
i,j ) + Lroi

cls (x
′UT
i , cPL

i,j )],
(S10)

where Ibbox(·) is the indicator function defined as follows:

Ibbox(b̂
var
i,j ) =

{
1, if 1

4

∑
k∈{x,y,w,h}

b̂vari,j,k ≤ γ

0, otherwise,
(S11)

where γ is the threshold for using pseudo-labels with vari-
ance less than a certain value. Iconf (·) is the indicator func-
tion defined as follows:

Iconf (p̂
mean
i,j ) =

{
1, if max(p̂mean

i,j ) ≥ τ
0, otherwise, (S12)

where τ is the threshold for using pseudo-labels with a
maximum class probability above a specific value. Pseudo-
labels are defined as follows:

cPL
i,j = argmax(p̂mean

i,j ). (S13)

Finally, after the student model is updated once by
Eq. (S9), the teacher model is updated by using the expo-
nential moving average (EMA) [12]:

θt ← αθt + (1− α)θs, ϕt ← αϕt + (1− α)ϕt, (S14)

where α is the update ratio.

S2. Additional Results
S2.1. Comparison with Domain Adaptation Meth-

ods for Each Category

Tables S1 and S2 show the comparison of accuracies for
each category for Cityscapes → Foggy Cityscapes and
Cityscapes → BDD100k, respectively, in Table 1. The
value in the table are the average precision at IoU=0.5.

In particular, in the bus column of Table S2, our pro-
posed method improves the accuracy by 14.3 to 17.8 pt from
AADA. This is because the accuracy of a minority of cat-
egories is reflected as undetectability, and the active sam-
pling focuses on images that contain objects in those cate-
gories. In Table S1, the accuracy of our proposed method is
already higher than that of Oracle, and the accuracy of our
proposed method is competitive with the previous method.

S2.2. Comparison with Active Sampling Strategies
for Each Category

Table S3 shows the comparison of accuracies for each cate-
gory for Cityscapes→ BDD100k in Table 2. The addition
of sfn improves accuracy of person and car and samples
more informative images due to the effectiveness of unde-
tectability.

S2.2.1 Analysis of Hyper-Parameters

Table S4 shows the comparison of performance at value of
dropout rate η and threshold value γ of pseudo-label with
variance in the KITTI → Cityscapes scenario. Changing
η has little effect on accuracy. In addition, if γ is set too
small, training becomes unstable. Therefore, we set η to 0.1
and γ to 0.1.

S2.2.2 Visualization of Active Sampling

Figure S1 shows top 10 images sampled from the target do-
main at round 1 in the Cityscapes → BDD100k scenario.
We compare the images sampled by the AADA method with
those sampled by our proposed method. In AADA, im-
ages with poor visibility due to rain on the glass in rainy
weather are selected. These images are expected to be hard
to detect, however this situation rarely occurs in the target
domain, and the images are not effective for training. In
contrast, our proposed method can sample more important
images with high detection difficulty and high frequency of
occurrence. In particular, images containing buses with low
accuracy have been selected and are effective for training.

Figure S2 shows statistical comparison of sampled ob-
jects and attributes in the Cityscapes → BDD100k sce-
nario. As shown in Figure S2a, in terms of the total num-
ber of objects in the selected images, our proposed method
included a thousand more objects than AADA. Therefore,
our proposed method selects more informative images. In
Figure S2b, AADA samples the same amount of images in
rainy as in clear weather. In contrast, our proposed method
samples mainly clear weather, while other weather condi-
tions are sampled evenly.

S2.2.3 Computational Cost

Table S5 shows a comparison of the time required for train-
ing the detection model, training the FNPM, and active sam-
pling. The GPU hours are measured on the NVIDIA V100
GPU. Our proposed method requires additional time to train
the FNPM before active sampling and additional time to in-
fer the FNPM model during active sampling. The FNPM
does not affect the training time of the detection model be-
cause it is trained before active sampling. The additional
time during the FNPM inference is negligible, and the total
additional time is within 10%.

S3. Limitation
Our proposed method was evaluated on the in-vehicle cam-
era dataset, although it has not been tested on other datasets.
We will experiment with adaptation scenarios from real im-
ages to illustrative images. Although we evaluated our pro-
posed method on a two-stage detector, it can also be applied



Table S1. Comparison of state-of-the-art UDA and ADA methods for each category in the Cityscapes → Foggy Cityscapes scenario.
The best and the second best accuracies are highlighted in bold.

Methods Reference Architecture Backbone person rider car truck bus train motor bike mAP

Source-only — Faster-RCNN VGG16 20.6 23.9 24.6 6.0 13.1 5.0 9.5 21.3 15.5

UDA

DA-Faster [3] CVPR’18

Faster-RCNN VGG16

25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6
SWDA [10] CVPR’19 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
PT [2] ICML’22 40.2 48.8 59.7 30.7 51.8 30.6 35.4 44.5 42.7
AT [9] CVPR’22 45.5 55.1 54.3 35.0 56.3 54.3 38.5 51.9 50.9
MGADA [15] CVPR’22 43.9 49.6 60.6 29.6 50.7 39.0 38.3 42.8 44.3
CMT [1] CVPR’23 45.9 55.7 63.7 39.6 66.0 38.8 41.4 51.2 50.3
CSDA [4] ICCV’23 43.1 58.4 44.7 50.0 33.3 37.3 42.9 50.5 45.0
NSA-UDA [16] ICCV’23 50.2 60.1 67.7 37.4 57.4 46.9 47.3 54.3 52.7
Ours (0%) — 50.8 56.5 67.5 28.1 58.1 55.6 44.3 55.8 52.0

ADA

AADA† [11] (1%)
WACV’20

Faster-RCNN VGG16

40.0 43.8 56.0 25.7 38.5 30.6 26.3 36.6 37.2
AADA† (5%) 42.8 47.1 58.6 21.7 44.4 22.6 31.5 39.7 38.5
Ours (1%) — 50.7 55.5 67.0 35.2 57.2 53.8 43.5 54.2 52.2
Ours (5%) 50.7 56.2 68.2 33.7 61.2 50.2 40.5 53.5 51.8

Oracle — Faster-RCNN VGG16 46.4 50.7 65.6 34.9 53.6 38.6 35.1 46.6 46.3

Table S2. Comparison of state-of-the-art UDA and ADA methods for each category in the Cityscapes → BDD100k scenario. The
best and the second best accuracies are highlighted in bold.

Methods Reference Architecture Backbone person rider car truck bus motor bike mAP

Source-only — Faster-RCNN VGG16 37.9 28.4 56.6 13.4 15.2 17.3 20.6 26.8

UDA

PDA [6] WACV’20

Faster-RCNN VGG16

37.6 32.9 51.8 19.3 23.7 16.1 25.3 29.5
ICR-CCR [14] CVPR’20 31.4 31.3 46.3 19.5 18.9 17.3 23.8 26.9
SFOD [8] AAAI’21 32.4 32.6 50.4 20.6 23.4 18.9 25.0 29.0
ILLUME [7] WACV’22 33.2 20.5 47.8 20.8 33.8 24.4 26.7 29.6
TDD [5] CVPR’22 39.6 38.9 53.9 24.1 25.5 24.5 28.8 33.6
PT [2] ICML’22 — — — — — — — 34.9
NSA-UDA [16] ICCV’23 — — — — — — — 35.5
Ours (0%) — 50.1 38.3 67.1 28.3 5.8 28.3 36.3 36.3

ADA

AADA† [11] (1%)
WACV’20

Faster-RCNN VGG16

45.7 31.7 60.8 19.8 23.6 20.2 30.0 33.1
AADA† (5%) 49.8 35.1 65.6 35.2 37.2 29.6 34.6 41.0
Ours (1%) — 54.7 41.9 70.5 36.3 41.4 30.8 40.2 45.1
Ours (5%) 57.1 46.6 72.2 47.6 51.5 38.0 43.2 50.9

Oracle — Faster-RCNN VGG16 54.5 44.9 73.9 57.6 54.4 38.1 43.0 52.3

to an one-stage detector. In the future, we will also evaluate
the effectiveness of an one-stage detector.
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