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Method Metric

CLIP Acc (↑) Dist (↓) LPIPS (↓)

SDEdit + word swap 99.2% 0.066 0.126
DiffuseIT 99.2% 0.066 0.255

DDPM inv + P2P 85.7% 0.073 0.147
DDPM inv + PnP 86.1% 0.078 0.166

DDS 100% 0.031 0.091
Ours 100% 0.027 0.088

Table 3. Quantitative evaluation for the cat → pig task. ’Dist’
denots DINO-ViT structure distance.

A. Implementation details

For implementation, we referenced the official source code
of Delta Denoising Score2 by using Stable Diffusion v1.4.
We extracted intermediate features from self-attention lay-
ers and apply PatchNCE loss similar to CUT. Inspired by
the analysis of CUT, we applied PatchNCE to all the up-
sampling self-attention layers but excluded features from
the U-Net bottleneck layer, as it is related to the overall se-
mantics of the images. For hyperparameters, we utilizes
patch sizes of 1 × 1 or 2 × 2 with 256 patches and set the
weight of ℓcon to 3.0. Other settings regarding to DDS, in-
cluding the number of optimization steps, optimizer, and
learning rate, adhere to the default configurations provided
in the official code. The code is available to public on
https://github.com/HyelinNAM/CDS. All im-
age manipulations were conducted using an NVIDIA RTX
6000, and the processing time for editing each image was
approximately 2 minutes and 50 seconds.

B. Quantitative Results

In addition to the quantitative results presented in the main
paper, Tab. 3 also demonstrates the effectiveness of our pro-
posed method in achieving optimal editing outcomes while
maintaining the structural elements of the source image. In
contrast, other baseline models achieve low structure dis-
tance. This implies that despite achieving high CLIP accu-
racy, the existing methods edited the image without consid-
ering the source structure. The visual comparison for both
tasks(see Fig. 10) also confirms the aforementioned quanti-
tative evaluation.

2https://github.com/google/prompt- to- prompt/
blob/main/DDS_zeroshot.ipynb

Figure 10. Sample results of the cat2dog task from DDS and CDS.

C. Additional Ablation studies
C.1. Patch size

First, we evaluate the impact of patch size by varying its
size. As shown in Fig. 11a, we observe that the patch size
has an effect on the extent of content preservation. As we
are regulating the latent, which is more compact than im-
age pixels, utilizing small patch size shows better impact
on preserving structural elements and background details.
Therefore, we decide to use a small patch, specifically 1×1
and 2× 2, to align with our objectives.

https://github.com/HyelinNAM/CDS
https://github.com/google/prompt-to-prompt/blob/main/DDS_zeroshot.ipynb
https://github.com/google/prompt-to-prompt/blob/main/DDS_zeroshot.ipynb


Figure 11. Ablation study on (a) patch size and (b) the number of
patches. The given prompt is “cat → pig,” “cat → cow,”, “cat →
pig” and ”cat → dog” from top to bottom.

C.2. The number of patches

We also ablate the impact of the number of patches and
found that it also determines the extent of the regulation. As
the number of patches increases, we observe a better preser-
vation of structural aspects of the original image, such as
facial structure and head angles (see Fig. 11b). Therefore,
we chose 256 number of patches.

D. Additional results
D.1. Qualitative results

In Figs. 13 and 14, we show our edited outputs with var-
ious images and prompts. The results clearly demonstrate
that our method can be applied not only to changing objects
but also to diverse cases, such as adding a smile or altering
gender. The proposed framework is capable of performing
the edits while still retaining the other details, such as back-
ground details.

D.2. NeRF editing

We further provide additional results on NeRF editing. To
fine-tune the NeRF model, we utilized the recent pre-trained
model, TensoRF [4]. For efficiency, we downsampled the
images to a resolution of 504x378 in pre-training stage. For

Figure 12. Additional results on NeRF editing.

fine-tuning the pre-trained model, we further downsampled
the resolution to 252x189 due to resource constraints.

For fine-tuning, we rendered source and target images
from the pre-trained source NeRF model ϕ and fine-tuned
model θ, respectively. With the same view direction d, we
obtain two rendered view x̂, x, representing rendered 2D
images from source and target model, respectively. By em-
bedding these two images into the encoder of the Stable Dif-
fusion model, we obtain source and target latent ẑ, z. With
the prepared latents, we can calculate DDS gradient as fol-
lows:

LDDS(θ, ytrg) = ∇θLSDS(z, ytrg)−∇θLSDS(ẑ, ysrc).
(7)

We also utilize our proposed contrastive loss along with the
aforementioned DDS gradient to update the NeRF parame-
ter θ. During training, we used the Adam optimizer with a
learning rate of 0.01, and conducted 400 iterations for fine-
tuning. The overall process takes about 8 minutes per sam-
ple.

In Fig. 12, we show the comparison results between
the baseline DDS and CDS. We observed that basic DDS
model struggles to accurately capture the shape of the orig-
inal 3D object, often resulting in changes to the entire color
tones. In contrast, our method enables localized object edit-



ing without compomising the shape of the original object.

E. Limitations and Negative social impact
Given that our framework manipulates images based on
user intentions, there is a potential for misuse, including
the creation of deepfakes or other forms of disinformation.
Additionally, our method has dependency on generative pri-
ors of a large text-to-image diffusion models, which may
contain undesired biases. Therefore, ensuring ethical im-
plementation and appropriate regulation are imperative for
these methods.



Figure 13. Additional qualitative results with various images and prompts.



Figure 14. Additional qualitative results with various images and prompts.
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