
A. Implementation Details

For all experiments, we used an NVIDIA GeForce RTX

3090 GPU and a DDIM sampler [50], setting the total sam-

pling time step to T = 50. We empirically set the time

steps to t ∈ [4, 50) for performing both our appearance

matching self-attention and semantic matching guidance.

We converted all self-attention modules in every decoder

layer l ∈ [1, 4) to the proposed appearance matching self-

attention. We chose λc = 0.4 and λg = 75 for evaluation

on the ViCo [22] dataset, and λc = 0.4 and λg = 50 for

evaluation on the proposed challenging prompt list.

B. Dataset

Prior works [17, 32, 44] in Text-to-Image (T2I) personaliza-

tion have used different datasets for evaluation. To ensure

a fair and unbiased evaluation, ViCo [22] collected an im-

age dataset from these works [17, 32, 44], comprising 16

unique concepts, which include 6 toys, 5 live animals, 2

types of accessories, 2 types of containers, and 1 building.

For the prompts, ViCo gathered 31 prompts for 11 non-live

objects and another 31 prompts for 5 live objects. These

were modified from the original DreamBooth [44] prompts

to evaluate the expressiveness of the objects in more com-

plex textual contexts. For a fair comparison, in this paper,

we followed the ViCo dataset and its evaluation settings,

producing 8 samples for each object and prompt, totaling

3,969 images.

Our goal is to achieve semantically-consistent T2I per-

sonalization in complex non-rigid scenarios. To assess the

robustness of our method in intricate settings, we created

a prompt dataset using ChatGPT [39], which is categorized

into three parts: large displacements, occlusions, and novel-

view synthesis. The dataset comprises 10 prompts each for

large displacements and occlusions, and 4 for novel-view

synthesis, separately for live and non-live objects. Specifi-

cally, we define the text-to-image diffusion personalization

task, provide an example prompt list from ViCo, and high-

light the necessity of a challenging prompt list aligned with

the objectives of our research. We then asked ChatGPT to

create distinct prompt lists for each category. The resulting

prompt list, tailored for complex non-rigid personalization

scenarios, is detailed in Figure A.12.

C. Baseline and Comparison

C.1. Baseline

DreamMatcher is designed to be compatible with any T2I

personalized model. We implemented our method using

three baselines: Textual Inversion [17], DreamBooth [44],

and CustomDiffusion [32].

Textual Inversion [17] encapsulates a given subject into

768-dimensional textual embeddings derived from the spe-

cial token ïS∗ð. Using a few reference images, this is

achieved by training the textual embeddings while keep-

ing the T2I diffusion model frozen. During inference, the

model can generate novel renditions of the subject by ma-

nipulating the target prompt with ïS∗ð. DreamBooth [44]

extends this approach by further fine-tuning a T2I diffusion

model with a unique identifier and the class name of the

subject (e.g., A [V] cat). However, fine-tuning all param-

eters can lead to a language shift problem [33, 36]. To

address this, DreamBooth proposes a class-specific prior

preservation loss, which trains the model with diverse sam-

ples generated by pre-trained T2I models using the cate-

gory name as a prompt (e.g., A cat). Lastly, CustomDiffu-

sion [32] demonstrates that fine-tuning only a subset of pa-

rameters, specifically the cross-attention projection layers,

is efficient for learning new concepts. Similar to Dream-

Booth, this is implemented by using a text prompt that

combines a unique instance with a general category, and it

also includes a regularization dataset from the large-scale

open image-text dataset [46]. Despite promising results,

the aforementioned approaches frequently struggle to accu-

rately mimic the appearance of the subject, including col-

ors, textures, and shapes. To address this, we propose a

tuning-free plug-in method that significantly enhances the

reference appearance while preserving the diverse structure

from target prompts.

C.2. Comparision

We benchmarked DreamMatcher against previous tuning-

free plug-in models, FreeU [49] and MagicFusion [68], and

also against the optimization-based model, ViCo [22].

The key insight of FreeU [49] is that the main backbone

of the denoising U-Net contributes to low-frequency seman-

tics, while its skip connections focus on high-frequency

details. Leveraging this observation, FreeU proposes

a frequency-aware reweighting technique for these two

distinct features, and demonstrates improved generation

quality when integrated into DreamBooth [44]. Magic-

Fusion [68] introduces a saliency-aware noise blending

method, which involves combining the predicted noises

from two distinct pre-trained diffusion models. MagicFu-

sion demonstrates its effectiveness in T2I personalization

when integrating a personalized model, DreamBooth [44],

with a general T2I diffusion model. ViCo [22] optimizes

an additional image adapter designed with the concept of

key-value replacement.

D. Evaluation

D.1. Evaluation Metrics

For evaluation, we focused on two primary aspects: subject

fidelity and prompt fidelity. For subject fidelity, following

prior studies [17, 22, 32, 44], we adopted the CLIP [42]

and DINO [5] image similarity metrics, denoted as ICLIP

and IDINO, respectively. Note that IDINO is our preferred



R
ef
er
en

ce
T
ar
g
et

� = 1 � = 2 � = 3 � = 4

Figure A.1. Diffusion feature visualization at different decoder

layers: The left side displays intermediate estimated reference and

target images at 50% of the reverse diffusion process. The target

is generated by DreamBooth [44] using the prompt A ïS∗ð on the

beach. The right side visualizes the top three principal components

of diffusion feature descriptors from different decoder layers l. Se-

mantically similar regions share similar colors.

metric for evaluating subject expressivity. As mentioned

in [22, 44], DINO is trained in a self-supervised manner to

distinguish objects within the same category, so that it is

more suitable for evaluating different methods that aim to

mimic the visual attributes of the same subject. For prompt

fidelity, following [17, 22, 32, 44], we adopted the image-

text similarity metric TCLIP, comparing CLIP visual features

of the generated images to CLIP textual features of the cor-

responding text prompts, excluding placeholders. Follow-

ing previous works [17, 22, 32, 44], we used ViT-B/32 [15]

and ViT-S/16 [15] for CLIP and DINO, respectively.

D.2. User study

An example question of the user study is provided in

Figure A.13. We conducted a paired human preference

study about subject and prompt fidelity, comparing Dream-

Matcher to previous works [22, 49, 68]. The results are

summarized in Figure 10 in the main paper. For subject

fidelity, participants were presented with a reference im-

age and generated images from different methods, and were

asked which better represents the subject in the reference.

For prompt fidelity, they were shown the generated im-

ages from different works alongside the corresponding text

prompt, and were asked which aligns more with the given

prompt. 45 users responded to 32 comparative questions,

resulting in a total of 1440 responses. We distributed two

different questionnaires, with 23 users responding to one

and 22 users to the other. Note that samples were chosen

randomly from a large, unbiased pool.

E. Analysis

E.1. Appearance Matching SelfAttention

Feature extraction. Figure A.1 visualizes PCA [41] results

on feature descriptors extracted from different decoder lay-

ers. Note that, for this analysis, we do not apply any of

our proposed techniques. PCA is applied to the interme-

Reference

Baseline

� * [4,50) � * [8,50) � * [12,50)

� * [1,4) � * [2,4) � * [3,4)

(a) AMA on different time steps, with fixed layers � * [1,4)

(b) AMA on different layers, with fixed time steps � * [4,50)

Figure A.2. Ablating AMA on different time steps and layers:

The left section shows a reference image and a target image gener-

ated by the baseline [44]. The right section displays the improved

target image generated by appearance matching self-attention on

(a) different time steps and (b) different decoder layers. For this

ablation study, we do not use semantic matching guidance.

diate feature descriptors of the estimated reference image

and target image from DreamBooth [44], at 50% of the re-

verse diffusion process. Our primary insight is that earlier

layers capture high-level semantics, while later layers fo-

cus on finer details of the generated images. Specifically,

l = 1 captures overly high-level and low-resolution seman-

tics, failing to provide sufficient semantics for finding cor-

respondence. Conversely, l = 4 focuses on too fine-grained

details, making it difficult to find semantically-consistent

regions between features. In contrast, l = 2 and l = 3
strike a balance, focusing on sufficient semantical and struc-

tural information to facilitate semantic matching. Based on

this analysis, we use concatenated feature descriptors from

decoder layers l ∈ [2, 3], resulting in ψt ∈ R
H×W×1920.

We then apply PCA to these feature descriptors, which re-

sults inψt ∈ R
H×W×256 to enhance matching accuracy and

reduce memory consumption. The diffusion feature visual-

ization across different time steps is presented in Figure 6

in our main paper.

Note that our approach differs from prior works [37, 54,

67], which select a specific time step and inject the corre-

sponding noise into clean RGB images before passing them

through the pre-trained diffusion model. In contrast, we uti-

lize diffusion features from each time step of the reverse dif-

fusion process to find semantic matching during each step

of the personalization procedure.

AMA on different time steps and layers. We ablate start-

ing time steps and decoder layers in relation to the proposed

appearance matching self-attention (AMA) module. Fig-

ure A.2 summarizes the results. Interestingly, we observe

that applying AMA at earlier time steps and decoder layers

effectively corrects the overall appearance of the subject, in-

cluding shapes, textures, and colors. In contrast, AMA ap-

plied at later time steps and layers tends to more closely pre-

serve the appearance of the subject as in the baseline. Note

that injecting AMA at every time step yields sub-optimal re-



Figure A.3. Relation between λc and personalization fidelity.

In this ablation study, we evaluate our method using the proposed

challenging prompt list.

Figure A.4. Relation between λg and personalization fidelity.

In this ablation study, we evaluate our method using the proposed

challenging prompt list.

sults, as the baselines prior to time step 4 have not yet con-

structed the target image layout. Based on this analysis, we

converted the self-attention module in the pre-trained U-Net

into the appearance matching self-attention for t ∈ [4, 50)
and l ∈ [1, 4) in all our evaluations.

E.2. Consistency Modeling

In Figure A.3, we show the quantitative relationship be-

tween the cycle-consistency hyperparameter λc and person-

alization fidelity. As we first introduce λc, prompt fidelity

TCLIP drastically improves, demonstrating that the confi-

dence mask effectively filters out erroneous matches, allow-

ing the model to preserve the detailed target structure. Sub-

sequently, higher λc values inject more reference appear-

ance into the target structure, increasing IDINO and ICLIP,

but slightly sacrificing prompt fidelity TCLIP. This indicates

that users can control the extent of reference appearance and

target structure preservation by adjusting λc. The pseudo

code for overall AMA is available in Algorithm 1.

E.3. Semantic Matching Guidance

In Figure A.4, we display the quantitative relationship be-

tween semantic matching guidance λg and personalization

fidelity. Increasing λg enhances subject fidelity IDINO and

ICLIP, by directing the generated target ẑY0,t closer to the

clean reference latent zX0 . However, excessively high λg
can reduce subject fidelity due to discrepancies between the

reference and target latents in early time steps. We carefully

ablated the parameter λg and chose λg = 75 for the ViCo

dataset and λg = 50 for the proposed challenging dataset.

The pseudo code for overall semantic matching guidance is

available in Algorithm 2.

diving into a poolReference

DreamBooth MasaCtrl DreamMatcher

�!"#$ 0.655 0.751 0.726

�%&"' 0.819 0.896 0.852

�%&"' 0.239 0.205 0.238

Figure A.5. DreamBooth vs. MasaCtrl vs. DreamMatcher.

Subject
Fidelity

8%

MasaCtrl DreamMatcher

33% 100%
Win Rate

Prompt
Fidelity

Figure A.6. User study: In this study, DreamBooth [44] is used

as the baseline for both MasaCtrl and DreamMatcher.

E.4. KeyValue Replacement vs. DreamMatcher

MasaCtrl [4] introduced a key-value replacement technique

for local editing tasks. Several subsequent works [4, 9, 11,

28, 31, 37] have adopted and further developed this frame-

work. As shown in Figure A.5, which provides a qualitative

comparison of DreamMatcher with MasaCtrl, the key-value

replacement is prone to producing subject-centric images,

often having poses similar to those of the subject in the ref-

erence image. This tendency arises because key-value re-

placement disrupts the target structure from the pre-trained

self-attention module and relies on sub-optimal matching

between target keys and reference queries. Furthermore,

this technique does not consider the uncertainty of predicted

matches, which leads to the injection of irrelevant elements

from the reference image into the changed background or

into newly emergent objects that are produced by the target

prompts.

In contrast, DreamMatcher preserves the fixed target

structure and accurately aligns the reference appearance by

explicitly leveraging semantic matching. Our method also

takes into account the uncertainty of predicted matches,

thereby filtering out erroneous matches and maintaining

newly introduced image elements by the target prompts.

Note that the image similarity metrics IDINO and ICLIP do

not simultaneously consider both the preservation of the tar-

get structure and the reflection of the reference appearance.

They only calculate the similarities between the overall pix-

els of the reference and generated images. As a result, the

key-value replacement, which generates subject-centric im-

ages and injects irrelevant elements from reference images

into the target context, achieves better image similarities

than DreamMatcher, as seen in Table 5 in the main paper.

However, as shown in Figure A.5, DreamMatcher more ac-



Method IDINO ↑ ICLIP ↑ TCLIP ↑

Warping only reference values (DreamMatcher) 0.680 0.821 0.231

Warping both reference keys and values 0.654 0.809 0.235

Table A.1. Ablation study on key retention.

Figure A.7. Statistical results from 5 sets of randomly selected

reference images.

curately aligns the reference appearance into the target con-

text, even with large structural displacements. More quali-

tative comparisons are provided in Figures A.17 and A.18.

This is further demonstrated in a user study compar-

ing MasaCtrl [4] and DreamMatcher, summarized in Fig-

ure A.6. A total of 39 users responded to 32 comparative

questions, resulting in 1248 responses. These responses

were divided between two different questionnaires, with 20

users responding to one and 19 to the other. Samples were

chosen randomly from a large, unbiased pool. An exam-

ple of this user study is shown in Figure A.14. Dream-

Matcher significantly surpasses MasaCtrl for both fidelity

by a large margin, demonstrating the effectiveness of our

proposed matching-aware value injection method.

E.5. Justification of Key Retention

DreamMatcher brings warped reference values to the target

structure through semantic matching. This design choice is

rational because we leverage the pre-trained U-Net, which

has been trained with pairs of queries and keys sharing the

same structure. This allows us to preserve the pre-trained

target structure path by keeping target keys and queries

unchanged. To validate this, Table A.1 shows a quantita-

tive comparison between warping only reference values and

warping both reference keys and values, indicating that an-

choring the target structure path while only warping the ref-

erence appearance is crucial for overall performance. Con-

cerns may arise regarding the misalignment between target

keys and warped reference values. However, we empha-

size that our appearance matching self-attention accurately

aligns reference values with the target structure, ensuring

that target keys and warped reference values are geometri-

cally aligned as they were pre-trained.

E.6. Reference Selection

We evaluate the stability of DreamMatcher against varia-

tions in reference image selection by measuring the variance

of all metrics across five sets of randomly selected reference

images. Figure A.7 indicates that all metrics are closely

distributed around the average. Specifically, the average

Method IDINO ↑ ICLIP ↑ TCLIP ↑

Textual Inversion [17] 0.529 0.762 0.220

Stable Diffusion (SD) 0.516 0.770 0.215

DreamMatcher 0.571 (+10.74%) 0.785 (+1.95%) 0.214 (-0.50%)

Table A.2. Quantitative results of DreamMatcher on Stable

Diffusion.

Reference Stable Diffusion DreamMatcher

� < �7 > ���/ �������� ������ ���� ������< �7 >

Figure A.8. Qualitative results of DreamMatcher on Stable Dif-

fusion.

IDINO is 0.683 with a variance of 6e−6, and the average

TCLIP is 0.225 with a variance of 3e−5. This highlights

that our method is robust to reference selection and con-

sistently generates reliable results. We further discuss the

qualitative comparisions- with different reference images in

Section G.

E.7. DreamMatcher on Stable Diffusion

DreamMatcher is a plug-in method dependent on the base-

line, so we evaluated DreamMatcher on pre-trained person-

alized models [17, 32, 44] in the main paper. In this section,

we also evaluated DreamMatcher using Stable Diffusion as

a baseline. Table A.2 and Figure A.8 show that Dream-

Matcher enhances subject fidelity without any off-the-shelf

pre-trained models, even surpassing IDINO and ICLIP of

Textual Inversion which optimizes the 769-dimensional text

embeddings.

E.8. Multiple Subjects Personalization

As shown in Figure A.9, we extend DreamMatcher for mul-

tiple subjects. For this experiments, we used CustomDiffu-

sion [32] as a baseline. Note that a simple modification,

which involves batching two different subjects as input, en-

ables this functionality.

E.9. Computational Complexity

We investigate time and memory consumption on differ-

ent configurations of our framework, as summarized in Ta-

ble A.3. As seen, DreamMatcher significantly improves

subject appearance with a reasonable increase in time and

memory, compared to the baseline DreamBooth [44]. Ad-

ditionally, we observe that reducing the PCA [41] dimen-

sion of feature descriptors before building the cost volume

does not affect the overall performance, while dramatically

reducing time consumption. Note that our method, unlike

previous training-based [8, 10, 18, 29, 34, 48, 53, 63, 65] or



Reference CustomDiffusion DreamMatcher

< �!
7> ���� �� < �#

7> �� �/� ����< �!
7>,< �#

7>

< �!
7> ���� �� < �#

7> �� �/� ����< �!
7>,< �#

7>

Figure A.9. Qualitative results of DreamMatcher for multiple

subject personalization.

Component IDINO ICLIP TCLIP Time [s] Mem. [GB]

(I) Baseline (DreamBooth [44]) 0.638 0.808 0.237 0.27 4.41

(II) (I) + Appearance Matching Self-Att. (PCA 64) 0.675 0.818 0.233 0.38 4.49

(III) (I) + Appearance Matching Self-Att. (PCA 256) 0.676 0.818 0.232 0.46 4.56

(IV) (II) + Semantic Matching Guid. 0.680 0.820 0.231 0.57 4.85

Table A.3. Computational complexity: We used Dream-

Booth [44] as the baseline. For this analysis, we examine the time

consumption for a single sampling time step.

optimization-based approaches [22], does not require any

training or fine-tuning.

F. More Results

F.1. Comparison with Baselines

We present more qualitative results comparing with base-

lines, Textual Inversion [17], DreamBooth [44], and Cus-

tomDiffusion [32] in Figure A.15 and A.16.

F.2. Comparison with Previous Works

We provide more qualitative results in Figure A.17 and A.18

by comparing DreamMatcher with the optimization-based

method ViCo [22] and tuning-free methods MasaCtrl [4],

FreeU [49], and MagicFusion [68].

G. Limitation

Stylization. DreamMatcher may ignore stylization prompts

such as A red ïS∗ð or A shiny ïS∗ð, which do not appear

in the reference images, as the model is designed to accu-

rately inject the appearance from the reference. However,

as shown in Figure A.10, combining off-the-shelf editing

techniques [3, 24, 60] with DreamMatcher is highly effec-

tive in scenarios requiring both stylization and place al-

teration, such as A red ïS∗ð on the beach. Specifically,

Reference DreamBooth DreamMatcher

� ��� < �7 > �� �/� ����/< �7 >

� ��� < �7 > �� ��� �� ����� ����� ���/ ����������< �7 >

Figure A.10. Integrating an image editing technique: From left

to right: the edited reference image by instructPix2Pix [3], the

target image generated by the baseline, and the target image gen-

erated by DreamMatcher with the edited reference image. Dream-

Matcher can generate novel subject images by aligning the modi-

fied appearance with diverse target layouts.

Reference DreamBooth DreamMatcher

A <S*> in front of the Eiffel Tower

H
ar
d

E
as
y

Figure A.11. Impact of reference selection on personalization:

The top row presents results using a reference image that is diffi-

cult to match, while the bottom row shows results using a refer-

ence image that is relatively easier to match. The latter, containing

sufficient visual attributes of the subject, leads to improved person-

alized results. This indicates that appropriate reference selection

can enhance personalization fidelity.

we initially edit the reference image with existing editing

methods to reflect the stylization prompt red ïS∗ð, and then

DreamMatcher generates novel scenes using this edited im-

age. Our future work will focus on incorporating stylization

techniques [3, 24, 60] into our framework directly, enabling

the model to manipulate the reference appearance when the

target prompt includes stylization.

Extreme Matching Case. In Appendix E.6, we demon-

strate that our proposed method exhibits robust performance

with randomly selected reference images. However, as de-

picted in Figure A.11, using a reference image that is rel-

atively challenging to match may not significantly improve



the target image due to a lack of confidently matched ap-

pearances. This indicates even if our method is robust in

reference selection, a better reference image which contains

rich visual attributes of the subject will be beneficial for per-

formance. Our future studies will focus on automating the

selection of reference images or integrating multiple refer-

ence images jointly.



Figure A.12. Challenging text prompt list: Evaluation prompts in complex, non-rigid scenarios for both non-live and live subjects. ‘{}’

represents ïS∗ð in Textual Inversion [17] and ‘[V] class’ in DreamBooth [44] and CustomDiffusion [32].



Figure A.13. An example of a user study comparing DreamMatcher with previous methods: For subject fidelity, we provide the

reference image and generated images from different methods, ViCo [22], FreeU [49], MagicFusion [68] and DreamMatcher. For prompt

fidelity, we provide the target prompt and the generated images from those methods. For a fair comparison, we randomly choose the image

samples from a large, unbiased pool.



Figure A.14. An example of a user study comparing DreamMatcher with MasaCtrl [4]: For subject fidelity, we provide the reference

image and images generated from two different methods, MasaCtrl and DreamMatcher. For prompt fidelity, the target prompt and generated

images from these two methods are provided. For a fair comparison, image samples are randomly chosen from a large, unbiased pool.



Algorithm 1 Pseudo-Code for Appearance Matching Self-Attention, PyTorch-like

def AMA(self, pca_feats, q_tgt, q_ref, k_tgt, k_ref, v_tgt, v_ref, mask_tgt, cc_thres, num_heads, **kwargs):

# Initialize dimensions and rearrange inputs.
B, H, W = init_dimensions(q_tgt, num_heads)
q_tgt, q_ref, k_tgt, k_ref, v_tgt, v_ref = rearrange_inputs(q_tgt, q_ref, k_tgt, k_ref, v_tgt, v_ref,

num_heads, H, W)

# Perform feature interpolation and rearrangement.
src_feat, trg_feat = interpolate_and_rearrange(pca_feats, H)
src_feat, trg_feat = l2_norm(src_feat, trg_feat)

# Compute similarity.
sim = compute_similarity(trg_feat, src_feat)

# Calculate forward and backward similarities and flows.
sim_backward = rearrange(sim, ‘‘b (Ht Wt) (Hs Ws) -> b (Hs Ws) Ht Wt’’)
sim_forward = rearrange(sim, ‘‘b (Ht Wt) (Hs Ws) -> b (Ht Wt) Hs Ws’’)

flow_tgt_to_ref, flow_ref_to_tgt = compute_flows_with_argmax(sim_backward, sim_forward)

# Compute cycle consistency error and confidence.
cc_error = compute_cycle_consistency(flow_tgt_to_ref, flow_ref_to_tgt)
fg_ratio = mask_tgt.sum() / (H * W)
confidence = (cc_error < cc_thres * H * fg_ratio)

# Warp value and apply semantic-consistent mask.
warped_v = warp(v_ref, flow_tgt_to_ref)
warped_v = warped_v * confidence + v_tgt * (1 - confidence)
warped_v = warped_v * mask_tgt + v_tgt * (1 - mask_tgt)

# Perform self-attention.
aff = compute_affinity(q_tgt, k_tgt)
attn = aff.softmax(-1)
out = compute_output(attn, warped_v)

return out



Algorithm 2 Pseudo-Code for Semantic Matching Guidance, PyTorch-like

for i, t in enumerate(tqdm(self.scheduler.timesteps)):

# Define model inputs.
latents = combine_latents(latents_ref, latents_tgt)

# Enable gradient computation for matching guidance.
enable_gradients(latents)

# Sampling and feature extraction from the U-Net.
noise_pred, feats = self.unet(latents, t, text_embeddings)

# Interpolation and concatenating features from different layers.
src_feat_uncond, tgt_feat_uncond, src_feat_cond, tgt_feat_cond = interpolate_and_concat(feats)

# Perform PCA and normalize the features.
pca_feats = perform_pca_and_normalize(src_feat_uncond, tgt_feat_uncond, src_feat_cond, tgt_feat_cond)

# Apply semantic matching guidance if required.
if matching_guidance and (i in self.mg_step_idx):

_, pred_z0_tgt = self.step(noise_pred, t, latents)
pred_z0_src = image_to_latent(src_img)
uncond_grad, cond_grad = compute_gradients(pred_z0_tgt, pred_z0_src, t, pca_feats)

alpha_prod_t = self.scheduler.alphas_cumprod[t]
beta_prod_t = 1 - alpha_prod_t
noise_pred[1] -= grad_weight * beta_prod_t**0.5 * uncond_grad
noise_pred[3] -= grad_weight * beta_prod_t**0.5 * cond_grad

# Apply classifier-free guidance for enhanced generation.
if guidance_scale > 1.0:

noise_pred = classifier_free_guidance(noise_pred, guidance_scale)

# Step from z_t to z_t-1.
latents = self.step(noise_pred, t, latents)



Textual Inv. DreamMatcher DreamBooth DreamMatcher CustomDiff. DreamMatcherReference

in a luxurious interior living room climbing a tree submerged halfway in a crystal-clear lake

in a magician outfit jumping over a fence in an astronaut outfit

in a basketball jersey leaping across rooftops in a city running across a busy city bridge

wearing a rainbow scarf wearing a bowtie jumping into a pool

climbing a treewearing a santa hat inside a cave entrance

in firefighter uniform swimming upstream in a river diving into a deep blue ocean

wearing a bowtie wearing a backpack climbing a tree

Figure A.15. Qualitative comparision with baselines for live objects: We compare DreamMatcher with three different baselines,

Textual Inversion [17], DreamBooth [44], and CustomDiffusion [32].



Textual Inv. DreamMatcher DreamBooth DreamMatcher CustomDiff. DreamMatcherReference

from the top

in the jungle on a sandy beach near the dunes with Japanese modern city street

with a beautiful sunset among the skyscrapers in New York city

at the edge of a swimming poolin a movie theater wearing a top hat

with a beautiful sunset wearing a scarf in a grassy park with a bench

in soccer player kit at the edge of a swimming pool with Japanese modern city street

on top of green grass with sunflowers partially covered by sand in the desert seen from the side

on top of a white rug inside a basket nestled among rocks

Figure A.16. Qualitative comparision with baselines for non-live objects: We compare DreamMatcher with three different baselines,

Textual Inversion [17], DreamBooth [44], and CustomDiffusion [32].



FreeU MagicFusion DreamMatcherReference ViCo MasaCtrlDreamBooth

climbing a tree

in an astronaut outfit

looking out from a tent

submerged halfway in a crystal-clear lake

jumping over a fence

wearing a backpack

swimming upstream in a river

Figure A.17. Qualitative comparison with previous works [4, 22, 44, 49, 68] for live objects: For this comparison, DreamBooth [44] is

used as the baseline for MasaCtrl [4], FreeU [49], MagicFusion [68], and DreamMatcher.



FreeU MagicFusion DreamMatcherReference ViCo MasaCtrlDreamBooth

nestled among rocks

inside a basket

at the edge of a swimming pool

inside a box

inside a closet

in a schoolyard playground

at a picnic spot with a checkered blanket

Figure A.18. Qualitative comparison with previous works [4, 22, 44, 49, 68] for non-live objects: For this comparison, Dream-

Booth [44] is used as the baseline for MasaCtrl [4], FreeU [49], MagicFusion [68], and DreamMatcher.


