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Supplementary Material

In this supplementary material, we present additional
technical details and more experimental results that could
not be included in the main manuscript due to the lack of
pages. The contents are summarized below:

• S1. Comparison with CHAIRS
• S2. Comparison of running time
• S3. Evaluation on object contact map
• S4. Details of initial reconstruction
• S5. More examples of undesired correlation
• S6. More qualitative results
• S7. Limitations and future works

S1. Comparison with CHAIRS
Table S1 shows that our CONTHO mostly outperforms
CHAIRS [16], a recently published 3D human and ob-
ject reconstruction method. There are two core differences
in the evaluation protocol between CHAIRS [16] and the
other state-of-the-art methods [48, 55]. First, CHAIRS [16]
only reports reconstruction scores in specific object classes,
such as chairs, table, yoga ball, and suitcase. Second, its
evaluation does not perform the Procrustes alignment be-
fore measuring the Chamfer distance. Consequently, for a
fair comparison with CHAIRS, Table S1 reports the per-
formance of our method following the CHAIRS evaluation
process. Similarly to the other previous methods [48, 55],
the CHAIRS is also an optimization-based method, which
first reconstructs an object voxel and optimizes the 3D
object mesh template on the reconstructed object voxel.
The optimization process totally depends on the 3D ob-
ject voxel reconstruction without considering image fea-
tures during the optimization. Biased on the optimization
target, CHAIRS often fails when the initial reconstruction
provides an imperfect or noisy object voxel. In contrast, our
learning-based approach produces outputs based on data-
driven knowledge obtained during training rather than op-
timizing on imperfect targets. Furthermore, CHAIRS does
not predict or exploit human-object contact for joint recon-
struction. Unlike CHAIRS, our CONTHO utilizes human-
object contact information as a key signal for reconstruction
by estimating and exploiting human-object contact maps for
3D human and object joint reconstruction.

S2. Comparison of running time
Table S2 shows that our CONTHO takes the shortest com-
putational time compared to previous 3D human and ob-
ject reconstruction methods. The running time is measured

Methods Chair Table Yogaball Suitcase

CDhuman↓ CDobject↓ CDhuman↓ CDobject↓ CDhuman↓ CDobject↓ CDhuman↓ CDobject↓

CHAIRS
[16] 13.77 12.73 11.53 15.22 10.82 9.88 9.53 15.84

CONTHO
(Ours) 5.94 9.91 6.57 9.30 6.42 10.67 4.81 8.36

Table S1. Quantitative comparison of 3D human and object
reconstruction with CHAIRS [16].

PHOSA [55] CHORE [48] CONTHO (Ours)

165.30 312.20 0.077

Table S2. Running time comparison between different meth-
ods. The unit is seconds per frame.

in the same environment with the Intel Xeon Gold 6248R
CPU and RTX 2080 Ti GPU. For all methods, we exclude
the pre-processing stage of acquiring human and object sil-
houettes. PHOSA [55] and CHORE [48] demand extremely
long times, as their optimization processes iteratively fit 3D
meshes with more than 100 iterations. On the other hand,
our CONTHO takes much less time, requiring only a single
feed-forward for the inference under the learning-based ap-
proach. Thus, our CONTHO has a significant advantage in
running time compared to previous methods [48, 55].

S3. Evaluation on object contact map

Compared to the previous human-object contact estimation
methods [14, 43], which only estimate a human contact
map, our CONTHO additionally estimates an object con-
tact map. We evaluate CONTHO in object contact maps
by using the same evaluation metrics of human contact
maps (i.e., Contactest

p and Contactest
r ), described in Section 5.

For the BEHAVE dataset [2], the precision and recall scores
of object contact estimation are 0.530 and 0.217, respec-
tively. For the InterCap dataset [15], the precision and re-
call scores are 0.627 and 0.323, respectively. Although
our qualitative results (Figure 5) show plausible estima-
tions about object contact maps, the scores of object con-
tact maps are relatively lower than those of human contact
maps. This is due to the lack of considerations for 3D ob-
ject symmetry from these evaluation metrics (i.e., Contactest

p

and Contactest
r ). For example, when touching a ball with a

sphere shape, any part of the ball can be the correct con-
tact region. However, the evaluation metrics are vertex-
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Figure S1. The detailed architecture of the initial reconstruc-
tion stage in CONTHO.

to-vertex comparisons between predictions and GTs, where
the vertex-to-vertex pairs are fixed. Thus, the evaluation
metrics cannot consider the symmetry of 3D objects, which
results in an underestimation of the performance of object
contact maps.

S4. Details of initial reconstruction
S4.1. Architectural design

Our initial reconstruction follows Hand4Whole [27] with
a few modifications. Figure S1 specifically describes the
backbone network in Figure 3, which consists of two sep-
arate ResNets for reconstructing 1) 3D human body along
with 3D object and 2) 3D human hands, respectively.
Initial body reconstruction. To predict 3D body parame-
ters θbody, we first extract an image feature F with a back-
bone network (i.e., ResNet-50 [13]). Then, we apply a 1-
by-1 convolutional layer, followed by soft-argmax opera-
tion [41], to extract 3D human body joints Jb from the im-
age feature F in a differentiable way. The 3D human body
joints Jb are utilized to extract body joint features Fjb by
conducting grid sampling onto (x, y) positions of 3D body
joint coordinates Jb of the image feature F. Based on the
extracted body joint features Fjb, we predict 3D body pa-
rameters θbody with a fully-connected layer after flattening
the 3D joint features Fjb. The image feature F is used fur-
ther for the three subsequent processes. First, the 2D hand
bounding boxes Bhand are obtained by forwarding the image
feature to a combination of convolutional layers and fully-
connected (FC) layers, where the 2D hand bounding boxes
are passed to initial hand reconstruction. Second, the image
feature is also used in initial object reconstruction. Third,
we obtain the 3D vertex features, which are the core com-
ponents of our CONTHO (Section 3).
Initial hand reconstruction. Using the estimated 2D
bounding boxes Bhand, we crop the input image I to ob-

tain hand image Ih, which serves as an input for initial hand
reconstruction. Similarly to the initial body reconstruction,
our initial hand reconstruction acquires 3D hand parame-
ters θhand with a similar process of extracting 3D hand joint
coordinates Jh and utilizing the 3D joint coordinates Jh to
obtain 3D joint features of hand Fjh, which will be passed to
a fully-connected layer. The 3D body parameters θbody from
initial body reconstruction and 3D hand parameters θhand
from initial hand reconstruction are passed to SMPL+H
model to get initial human mesh Mh.
Initial object reconstruction. To predict 3D object pa-
rameters (Ro and to), we process image feature F from
the initial body reconstruction and predict 3D object rota-
tion Ro and translation to with a fully-connected layer. In
the end, the initial reconstruction stage obtains the initial
object mesh Mo along with the initial human mesh Mh,
which are passed to the next stage of CONTHO, the 3D-
guided contact estimation.

S4.2. Loss function design

In Section 3, the Linit is designed to supervise the output of
the initial reconstruction stage, with a few modifications of
Hand4Whole [27]’s loss function. The Linit is defined as

Linit = Lparam + Lcoord + Lhbox. (4)

Parameter loss (Lparam). We minimize L1 loss between
the predicted and GT parameters for 3D human body
mesh θbody, 3D human hand mesh θhand, and 3D object
mesh (Ro, and to).
Coordinate loss (Lcoord). We utilize L1 loss between the
predicted and GT human joint coordinates. Specifically,
the human joint coordinates consist of three types: 1) the
extracted 3D body joint coordinates Jb and 3D hand joint
coordinates Jh, 2) 3D joint coordinates regressed from 3D
human mesh Mh with pre-defined regression matrix of
SMPL+H, and 3) 2D joint coordinates, obtained by project-
ing the 3D joint coordinates from 3D human mesh Mh to
image space.
Hand bounding boxes loss (Lhbox). We implement L1
loss between the predicted and GT bounding boxes of hand.
Specifically, the L1 distance for the center and scale of the
bounding boxes are computed following Hand4Whole [27].

S5. More examples of undesired correlation

In Figure S3, we provide more examples of the undesired
correlation between human and object. In these examples,
we further show that the Transformer baseline with naive
use of contact, learns undesired correlation between human
and object. As shown in Figure S3, the Transformer base-
line outputs objects to face toward a certain human body
part (e.g., the back of a chair and a monitor display facing



toward human face) or to be positioned in frequent interact-
ing poses (e.g., a keyboard in typing position and chair in
regular sitting position). Unlike the baseline method, our
CONTHO does not suffer from the undesired correlation
with the novel contact-based refinement Transformer.

In Figure S4, we additionally show the undesired corre-
lation between human and object with sensitivity tests. In
addition to the main manuscript, which only showed sensi-
tivity tests of object errors, we show the results of our sen-
sitivity test of human errors for the Transformer baseline
and our CRFormer with more results for sensitivity tests of
object errors on BEHAVE [2] and InterCap [15]. The re-
sults from sensitivity tests show that the Transformer base-
line contains high sensitivity in the object regions for hu-
man errors and in human regions for object errors, indicat-
ing a high correlation between human and object. Unlike
the Transformer baseline, our CRFormer gives reasonable
sensitivity of human regions for human errors and object
regions for object errors on both datasets.

S6. More qualitative results

We provide more qualitative comparisons of human-object
contact estimation and 3D human and object reconstruction
under two experimental protocols: 1) training & evaluating
all methods on BEHAVE [2] and 2) training & evaluating all
methods on InterCap [15]. Figure S5 and Figure S6 show
that our CONTHO vastly outperforms previous contact es-
timation methods (BSTRO [14] and DECO [43]) on BE-
HAVE [2] and InterCap [15]. Figure S7 and Figure S8 show
that our CONTHO produces much accurate reconstruction
results than previous reconstruction methods (PHOSA [55]
and CHORE [48]) on BEHAVE [2] and InterCap [15].

S7. Limitations and future works

Generalization to in-the-wild images. Figure S2 shows
qualitative reconstruction results of CONTHO on in-the-
wild images of MSCOCO [25] and MPII [1]. To obtain the
results, we used the network trained on BEHAVE [2], with-
out any fine-tuning. As shown in Figure S2 (b), our CON-
THO fails on some in-the-wild images. This is mainly due
to domain gap between training datasets [2] and in-the-wild
images. As the training datasets are acquired in restricted
environments, the datasets contain much less diverse im-
age appearances compared to in-the-wild datasets. Due to
such a domain gap problem, generalization on in-the-wild
images is one of the challenges to be solved.
Diversity of object shape. Our CONTHO covers a lim-
ited number of 3D object categories, included in the train-
ing datasets. However, real-world objects are more diverse
than the restrained categories of training objects. Collecting
more 3D object data in the real-world and learning interac-
tion with the objects are crucial future research directions.

(b) Failure cases on in-the-wild images

(a) Reconstruction results on in-the-wild images
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Figure S2. Qualitative results of CONTHO on in-the-wild im-
ages.

Video as input. Our CONTHO aims to jointly reconstruct
3D human and object from a single image. The recent emer-
gence of a video-based method for 3D human and object
reconstruction [49] suggests that reconstructing human and
object from a video could be a promising direction. Despite
its strong performance, it utilizes future frames for the re-
sults of a certain frame, which we call an offline approach.
Instead, we think an online approach, which does not as-
sume the availability of the future frame, could be closer
to real-world applications, and we aim to extend our CON-
THO for such an online approach.

License of the Used Assets

• BEHAVE dataset [2] is available for the sole purpose of
performing non-commercial scientific research.

• InterCap dataset [15] is released for non-commercial sci-
entific research purposes.

• BSTRO codes [14] are released under the MPI license.
• DECO codes [43] are released for non-commercial scien-

tific research purposes.
• PHOSA codes [55] are released under CC BY-NC 4.0.
• CHORE codes [48] is available for the sole purpose of

performing non-commercial scientific research.
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Figure S3. Undesired correlation between human and object on BEHAVE [2].
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Figure S4. Sensitivity tests of human errors (left) and object errors (right) on BEHAVE [2] and InterCap [15].
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Figure S5. Qualitative comparison of human-object contact estimation with BSTRO [14] and DECO [43], on BEHAVE [2]. The
green color indicates the contacting regions.
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Figure S6. Qualitative comparison of human-object contact estimation with BSTRO [14] and DECO [43], on InterCap [15]. The
green color indicates the contacting regions.
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Figure S7. Qualitative comparison of 3D human and object reconstruction with PHOSA [55] and CHORE [48], on BEHAVE [2].
We highlight their representative failure cases with red circles.
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Figure S8. Qualitative comparison of 3D human and object reconstruction with PHOSA [55] and CHORE [48], on InterCap [15].
We highlight their representative failure cases with red circles.


