
PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision
Neural Networks

Supplementary Material

1. Elementwise Multiplications
In Section 3.2, we propose ACEv2 which extends ACE to
account for elementwise multiplications. We derived the
number of adders required for multiplying an i-bit number
by a j-bit number as i · j − max(i, j). Here we provide
a more detailed justification for the derived formula. For
simplicity, we assume both operands have the same number
of bits (i.e., i = j) in this derivation. Elementwise multipli-
cations requires a multiplier as well as an adder to account
for the dot pattern at the completion of the multiplication
[2]. We base our derivation on the established implementa-
tion of Dadda multiplier [2] and Ripple-Carry Adder (RCA)
[1] to estimate the cost of elementwise multiplications. To
multiply two i-bit numbers, the Dadda multiplier requires
i2 − 3i + 2 adders [2], while the RCA adds another 2i − 2
adders. This leads to a total number of adders equal to i2−i.
To generalize to operands with different precisions, the cost
for elementwise multiplications between an i-bit number
and a j-bit number can be derived as i · j −max(i, j), with
i · j reflecting the cost of the multiplier and max(i, j) repre-
senting the final addition. Independently, we performed an
empirical verification for 1 ≤ i, j ≤ 64 which confirmed
the correctness of this formula, showing zero error in pre-
dicted adder counts. This refinement in ACEv2 cost calcu-
lation enhances our understanding of multiplier complexity.

2. Floating Point Elementwise Additions
In Section 3.2, we improve ACE by extending it to include
the cost of floating-point elementwise addition. We derive
the cost of adding an i-bit and a j-bit floating point numbers,
using the formula

ACEfp−add = ca ·max(i, j) (1)

For simplicity, we assume both operands have the same
number of bits (i.e., i = j) in this derivation. ca reflects
the added complexity of floating point operations compared
to fixed-point addition. To derive ca, we look into the com-
ponents of floating-point adders [6] and analyze the ACEv2

cost for each component. Assuming e bits for the exponent
and m bits for the mantissa, the main components of the
floating-point adder and their corresponding ACEv2 costs
are as follows:
1. Exponent Subtraction: Involves subtracting the exponent

bits resulting in an ACEv2 cost of e.
2. Operand Swapping: Requires a single multiplexer with

negligible ACEv2 cost.

3. Limitation of Alignment Shift Amount: Involves adding
the mantissa bits resulting in an ACEv2 cost of m.

4. Alignment Shift: Involves shifting by the mantissa bits
adding an ACEv2 cost of m · log2(m)/51.

5. Significand Negation: Involves one bit subtraction re-
sulting in an ACEv2 cost of 1.

6. Significand Addition: Requires mantissa bits addition re-
sulting in an ACEv2 cost of m.

7. Significand Conversion: Requires two additions adding
an ACEv2 cost of 2m.

8. Normalization: Requires shifting e bits resulting in an
ACEv2 cost of e · log2(e)/5.

9. Rounding and Post-normalization: Requires adding m
bits with an ACEv2 cost of m.
Summing the costs for all the components, we get a total

cost of m(5 + log2(m)/5) + e + e · log2(e)/5 + 1. Con-
sidering the dominant role of mantissa operations, we ap-
proximate the total cost to i(5 + log2(i)/5) where i is the
number of bits of the added floating point number. The up-
per bound for log2(i)/5 is 1 when m is 32. Therefore, we
can derive the cost as 6i̇ resulting in ca = 6 in Equation
1. This approximation streamlines ACEv2 calculation for
floating-point additions. To verify its correctness, we show
that it aligns well with the independently measured energy
consumption observed in 45nm CMOS technology in Table
1.

3. Model Scaling
To scale PikeLPN-1× to the 2×, 3×, and 6× sizes, we em-
ploy a series of scaling techniques including multiplying the
output channels of the convolution layers by a scaling fac-
tor and increasing the precision of the feature maps at the
point-wise convolution layers. These techniques increase
both the ACEv2 cost and the representational capacity of
the model, allowing us to generate a Pareto family of mod-
els. The details for each model are described in Table 1. For
nomenclature, the scale factor represents the ACEv2 cost
of the scaled model compared to that of the smallest model.
For example, PikeLPN-3× has approximately 3 times the
ACEv2 cost of PikeLPN-1×.

4. QuantNorm Layer
As shown in Subsection 3.3, QuantNorm reduces quantiza-
tion error during training improving the performance of our

1ACEv2 cost for shift operation is derived as i · log2(j)/5 in Sub-
section 3.2



Table 1. Comparison of PikeLPN variants’ training parameters,
with dropout rates calibrated to mitigate overfitting. Each model’s
training duration and learning rate strategy are customized accord-
ing to its complexity. They are initialized with weights from an
floating point PikeLPN model, employing a consistent learning
rate of 10−12 during the tail period to enhance stability and vali-
dation accuracy, crucial for smaller models.

PikeLPN Size 1× 2× 3× 6×
ACEv2 (×109) 8.68 15.74 33.97 59.10

Channel Multiplier 1.0 1.0 1.5 2.0

Activation precision (6, 1, 1) (8, 7, 1) (8, 7, 1) (8, 7, 1)
(int bits, frac bits, sign bit)

Removal of BN layers Yes No No No
between depthwise and
pointwise convolutions

Constant learning rate 300 300 20 50
tail period (epochs)

Training epochs 500 1500 1000 1000

Dropout rate 1e-3 1e-3 0.5 0.7

0 100 200 300 400 500
Training Iterations

0

20

40

60

Tr
ai

ni
ng

 To
p-

1 
(%

)

FP32 BN
8-bit Vanilla BN

8-bit QuantNorm (Ours)
Folded BN

Figure 1. Training Top-1 Accuracy during QAT on ImageNet at
different Batch Norm Quantization techniques for PikeLPN-1×.

PikeLPN models on ImageNet image classification dataset
[3]. As shown in Figure 6, QuantNorm maintains close-to-
FP validation accuracy when using it during PikeLPN-1×
training. Figure 1 shows the top-1 training accuracy while
training the same model using different batch normaliza-
tion quantization techniques. Moreover, to ensure that the
same behaviour persists at different PikeLPN scales, Fig-
ures 2a and 2b shows the top-1 training and validation ac-
curacies respectively of PikeLPN-2× when using our pro-
posed QuantNorm layer versus the vanilla batch norm quan-
tization shown in Equation 5.

5. Early LR Decay

As mentioned in Subsection 4.1, our PikeLPN models are
trained using an AdamW optimizer and a Cosine Decay
Schedule. The initial learning rate is 1e − 4 and annealed
using a cosine schedule to 1e − 12. Figure 3 summarizes
the training behaviour with various learning rate schedules.
The x-axis represents the training iterations which we limit

0 100 200 300 400 500
Training Iterations

66

68

70

72

Tr
ai

ni
ng

 To
p-

1 
(%

)

FP32 BN
8-bit Vanilla BN

8-bit QuantNorm (Ours)

(a) Training Accuracy (%)

0 100 200 300 400 500
Training Iterations

60.0

62.5

65.0

67.5

Va
lid

at
io

n 
To

p-
1 

(%
)

FP32 BN
8-bit Vanilla BN

8-bit QuantNorm (Ours)

(b) Validation Accuracy (%)

Figure 2. Top-1 Accuracy during QAT on ImageNet at different
Batch Norm Quantization techniques for PikeLPN-2×.

0 100 200 300 400 500
62

63

64

65

66

Va
lid

at
io

n 
To

p-
1 

(%
)

0 100 200 300 400 500
Training Epochs

10 11

10 9

10 7

10 5

Le
ar

ni
ng

 R
at

e

200 300 400 500

Figure 3. Validation Top-1 Accuracy for PikeLPN-1× model with
various learning rate decay schedules. All the training sessions
match exactly except for the number of decay steps which ranges
between 200 and 500 epochs.

to 500 epochs. The y-axis in the top graph represents the
validation top-1 accuracy on ImageNet, while the y-axis in
the bottom graph represents the learning rate. All the train-
ing sessions match exactly except for the number of decay
steps which ranges between 200 and 500 epochs. The fig-



Table 2. PikeLPN versus baselines - detailed analysis for con-
tribution of elementwise operations to ACEv2. Total represents
the total percentage of elementwise operations from ACEv2. BN,
ACT and QP represents the detailed contribution of batch norm
layers, activation layers and quantization overhead respectively.

Model MAC ACEv2
Elementwise ACEv2

Total BN Act QP

PokeBNN-0.5x 4.2 95.8% 43.4% 29.2% 21.5%
PikeLPN-1× 96.4 3.9% 3.7% 0% 0.2%

PROFIT 48% 52% 19% 17% 16%
PikeLPN-2× 97.9 2.1% 2% 0% 0.1%

PokeBNN-1x 6.2 93.8% 42.2% 28.4% 20.9%
PikeLPN-6× 98.9 1.13% 0.98% 0% 0.2%

ure highlights two main observations. First, training for
the final few epochs at a constant low learning-rate (i.e.,
1e − 12) help the weights of the low-precision models sta-
bilize and significantly boost the accuracy (i.e., 1 − 2%).
Second, the number of decay steps is an important hyper-
parameter when training low-precision models. For exam-
ple, we noticed that for PikeLPN-1×, setting the number of
decay steps to 300 gives an extra 0.5− 1% improvement in
validation accuracy.

6. Detailed Analysis for Contribution of Ele-
mentwise operations to ACEv2

Table 2 shows the detailed contributions of different ele-
mentwise computation sources to the overall ACEv2 cost.

7. Comparing ACE to similar metrics
In Section 3.2, we propose an extension to ACE, but our
proposed extension could in principle generalize to other
metrics similar to ACE. All previous metrics similar to ACE
known by the authors only account for accumulate/dot-
product operations and not elementwise operations, mak-
ing our proposed extension generally valuable. Even so, we
chose to specifically extend the ACE metric as opposed to
other metrics due to ACE’s simplicity and efficacy in pre-
dicting energy costs. We extend ACE because it was built
with ML researchers in mind, creating balance between
complexity and abstraction of hardware energy which -
- from a physics perspective in CMOS - is likely to limit
future ML hardware. We would like to compare ACE to
four other metrics that are often brought up when trying
to predict hardware costs: (1) Fanout-of-4 inverter delay
(FO4) [7] is a constraint in hardware design, but not neces-
sarily a target for ML researchers. (2) Ristretto [4] measures
power cost through a labor-intensive synthesis, inaccessi-
ble to ML researchers. (3, 4) The Unit-gate model [8] and
full-adder count [5] correlate very well with ACE and dif-
fer only by a small constant factor 2. Therefore our ACEv2

2Unlike ACEv2, their application to DNNs does not take the cost el-

extension would generalize to these metrics. Moreover, all
those metrics, including ACEv2, are technology indepen-
dent.

References
[1] S. Archana and G. Durga. Design of low power and high speed

ripple carry adder. In 2014 International Conference on Com-
munication and Signal Processing, pages 939–943, 2014. 1

[2] Wesley Donald Chu. Wallace and dadda multipliers imple-
mented using carry lookahead adders. 2013. 1

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. 2

[4] Philipp Gysel, Jon Pimentel, Mohammad Motamedi, and So-
heil Ghiasi. Ristretto: A framework for empirical study of
resource-efficient inference in convolutional neural networks.
IEEE transactions on neural networks and learning systems,
29(11):5784–5789, 2018. 3

[5] Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Ana-
lytical guarantees on numerical precision of deep neural net-
works. In International Conference on Machine Learning,
pages 3007–3016. PMLR, 2017. 3

[6] P.-M. Seidel and G. Even. On the design of fast ieee floating-
point adders. In Proceedings 15th IEEE Symposium on Com-
puter Arithmetic. ARITH-15 2001, pages 184–194, 2001. 1

[7] Ivan Sutherland, Robert F Sproull, and David Harris. Logi-
cal effort: designing fast CMOS circuits. Morgan Kaufmann,
1999. 3

[8] Reto Zimmermann. Computer arithmetic: Principles, archi-
tectures, and vlsi design. Personal publication (Available at
http://www. iis. ee. ethz. ch/ zimmi/-publications/comp arith
notes. ps. gz), 1999. 3

ementwise operations into account nor does it account for carry-save for-
mat for local accumulator representations typically used in systollic arrays.


	. Elementwise Multiplications
	. Floating Point Elementwise Additions
	. Model Scaling
	. QuantNorm Layer
	. Early LR Decay
	. Detailed Analysis for Contribution of Elementwise operations to ACEv2
	. Comparing ACE to similar metrics

