
Supplemental Material for “From Audio to Photoreal Embodiment:
Synthesizing Humans in Conversations”

Project Page Results Video Dataset, Code, Demo

1. Results Video
Our results video shows sequences of various individuals

in different conversational settings from our dataset. Below,
we denote the time stamp range associated with the discus-
sion - (@mm:ss-mm:ss).

The results show that our model successfully models
plausible, motion that is synchronous with the ongoing
conversational dynamics. For instance, it correctly gen-
erates facial expressions and body language of someone
feeling disgruntled e.g. dismissive hand wave and turning
away (@02:58-03:11). The generated gestures are well-
timed with the conversation e.g. raised finger with “I think”
(@02:30-@02:50). Additionally, our approach can pro-
duce multiple plausible motion trajectories based on a sin-
gle conversational audio input, each with distinct variations
(@03:15-@03:55).

Compared against baselines and prior works, our method
generates more “peaky” motion such as wrist flicks while
listing (@04:16), and finger pointing (@04:50), which are
both missed by a diffusion-based method LDA [Alexander-
son et al. 2023]. In comparison to a VQ-based method
SHOW [Yi et al. 2023], ours produces more dynamic mo-
tion with increased arm movement (@04:52), and seamless
transitions between poses when switching from asking a
question, to listening, to responding (@05:12-05:30). In
contrast, SHOW moves to the audio but hovers around the
same pose throughout. In comparison to both Random and
KNN, gestures by our approach match the audio far better.

Notably, without any retraining, our method generalizes
to conversational audio not seen in the dataset, such as a ran-
dom movie clip audio (@05:44-@06:03). This is possibly
due to the identity-agnostic training of Wav2Vec. We can
also extend our method to the application of video editing,
where we can reanimate a target person with a different mo-
tion trajectory by swapping guide poses (@06:10-06:27).

2. Contributions
We would like to emphasize the scientific value our work

provides to the community: currently, motion generation re-
searchers are stuck with mesh-only approaches, for which it
is challenging to discern whether the issue lies in the qual-

ity of the avatar model or in the generated motion. For the
first time, we (1) provide evidence that evaluators are more
perceptive of subtle gestures in the photoreal space than in
mesh space, which hides deficiencies (Fig. 8), (2) publish
a photoreal gesture dataset that has not existed or was not
widely available, allowing the community to make the nec-
essary pivotal jump from mesh-based to photoreal represen-
tations. Public availability of this high quality data has the
potential to cause a major leap forward in motion synthesis.
(3) Our method provides a strong baseline that serves as a
starting point for those looking to use our data. We provide
a gradio app, code, and dataset on our project github.

3. Method
3.1. Pose representation

While we use a standard SO(3) representation for the
joint angles, we note that not all joints are parameterized
with 3 degrees of freedom ( e.g. arm twist is only repre-
sented with roll, head bend with yaw, etc. ). In total, we
have 104 rotation angles across all of the joints.

3.2. Residual VQ-VAE

The residual VQ-VAE allows us to capture finer-grain
details by employing a cascade of codebooks to capture pro-
gressively finer approximations. We use residual length of
4. In practice, this means we need a sequence of 4 VQ to-
kens to represent a single pose. To generate poses during
test time for the diffusion model, we autoregressively out-
put 4 × K tokens one at a time, where K is the length of
the downsampled sequence. For the both the encoder and
decoder, we use a series of 1D convolutions of kernel size
2. The total receptive field for both the encoder and decoder
is 8. We use a codebook size of 1024, and embedding size
of 64. We train for 300k steps.

3.3. Guide pose Transformer

We adapt the diffusion model’s architecture for the guide
pose network. The transformer architecture is composed of
masked self-attention layers that focuses only on previous
timesteps to enable autoregressive prediction. The audio
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is then incorporated using non-causal cross attention lay-
ers. This means the network doesn’t see past motion, but
sees the full context of audio. We then remove the dif-
fusion timestep τ conditioning, and instead feed in an au-
dio embedding (averaged over the whole time series) to the
FiLM layers. While not necessary, this slightly helps the
transformer to generate more plausible poses on the very
first time-step. We use 2 masked self-attention layers and
6 cross-attention layers, all with 8 heads. We train for
≈ 100k iterations depending on the individual.

3.4. Comparisons on other data

We emphasize that our primary scientific contribution
lies in highlighting the need for photorealistic avatars when
evaluating fine-grain motion in gesture generation. Since
prior works are constrained to datasets with untextured
meshes, we publicly release a photoreal dataset to facili-
tate this transition. We propose a baseline method to set a
benchmark for using this novel dataset. In Tables 1 and 2,
we show that our ideas (e.g. guide poses) work well vs. prior
motion generation works.

Training on other data is nontrivial as they rarely in-
clude full face, body, and hands. Even when they do, trans-
forming the joints from one skeleton to another is nontriv-
ial. Furthermore, since prior datasets are all monologues
(one speaker only), we retrain prior SOTA (LDA [2] and
SHOW [40]) on our dyadic data, where we observe back-
and-forth, listening/speaking dynamics missing from mono-
logues.

Still, to provide evidence that our method is well-
justified, we evaluate the full motion (Tab. 1) and isolated
face (Tab. 2) against prior SOTA. We also ran a small ex-
periment with CodeTalker [Xing et al. CVPR 2023], which
is a purely lip-sync method. A new row in Table 2 for
CodeTalker would be 2.59, 2.01, 1.90 (vs. Ours 2.29, 1.89,
1.76), which has similar failure cases as SHOW (L805-08).

3.5. Dataset info

For the data collection process, we had participants in a
multi-view capture dome. Our processing pipeline is a stan-
dard tracking pipeline which closely follows the procedure
described in Multiface [Wuu et. al. 2023]. For full body
reconstruction, we extended the pipeline from face to body
accordingly. The individuals are all captured at a resolu-
tion of 2048 × 1334 pixels. From the multi-view cameras,
we then turn them into tracked meshes including headposes
and unwrapped textures of 1024 × 1024 pixels. The cap-
ture system also tracks metadata including camera intrinsics
and extrinsics, along with the audio of each person. The
code and dataset of the original capture system is released
in this repository.

For our conversational dataset, we use the above ap-
proach to capture 4 participants. We take pairs of partici-

pants and ask them to discuss a vague topic. The topics we
assign them range from selling an object to interviewing a
candidate. However, in order to make sure the interactions
do not feel too canned, we keep the prompt vague.

For each conversation, one person is standing in a mul-
tiview dome while the other is sitting in a separate dome.
They view each other from a screen and have microphones
to speak to one another in real time. However, we do note
that this setup is a bit limiting in that it allows us to recon-
struct the full body of one person, and only the face of the
other. Furthermore, having them sit in separate domes may
affect the interactions. However, we leave these improve-
ments for future work.

3.6. Implementation details

We use a max sequence length of 600 frames at 30 fps
(20 second videos). During training, we randomly sample
a sequence between 240 frames and 600 frames. We then
train on padded sequences of random lengths for all of our
networks. This allows us to generate sequences of arbitrary
length during test time. We train each network for each
subject in the data separately. All networks are trained on a
single A100. Approximate train times: face diffusion model
(8 hr), VQ + coarse pose predictor (5 hr), pose diffusion
model (8 hr).

4. Results
4.1. Quantitative metrics

Proposing an effective quantitative metric for evaluating
dyadic motion is still an open problem [28]. For instance,
NN and Random have better FDk and Divg because they
are simply samples from the train set (not generated). Thus,
it is expected they would have the diversity and velocity of
motion that match the test set. However FDg , measuring
the “realism” of the generated static poses/expressions, is
bad for both because they do not appropriately match the
conversational dynamics, and thus fail to match the true ex-
pressions/motion of ground truth (L732-36). It is therefore
difficult to reduce the quantitative metric down to a single
number. Like prior work [2], we break down the metrics
into different axes- realism and diversity- and find the best
balance across all metrics (Table 1). Similar to [2, 3, 28], a
well-designed perceptual evaluation is more reliable. Here,
we significantly outperform prior work. We have released
our evaluation setup in our codebase.

4.2. Perceptual evaluation

For each Ours vs. GT (mesh), vs. GT (photoreal),
vs. LDA (mesh), vs. LDA (photoreal), we generate 50 A-B
tests. For each test, we ask 3 different evaluators, totalling
to 600 evaluators. Each A-B test contained 14 questions.
Prior to the actual test, we provide a headphone check to
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make sure the evaluators are listening to audio. However,
we do not ask additional questions that check to see if they
are actually listening to the speech. The landing page de-
scribes the task and walks evaluators through 2 examples.
To ensure the evaluators are not randomly clicking, we in-
clude 3 questions with an obvious mismatch (one speaker
laughing while the listener is neutral) twice. If the evaluator
selects a different response for these duplicated questions,
we do not allow them to submit.

4.3. Ablation with VQ-only method

In the main paper, the VQ-only baseline is represented
with prior work SHOW [Alexanderson et al. 2023], which
is very similar to our guide pose network. For complete-
ness, we also train a VQ-only baseline using our network
architecture. We see very similar results to SHOW and sim-
ilar limitations. Quantitatively, FDg = 5.00, FDk = 2.80,
Divg = 2.20, Divk = 1.89. Note the higher FD and lower
diversity compared to our complete method. We notice that
after many timesteps, drift often happens which causes the
method to either get stuck in a local minima (no motion).

4.4. Unified model

We conjecture that pretraining on an outside larger
dataset or on the full dataset would improve results. While
we briefly attempted training on the full 8 hours of data
across all IDs, this did not significantly improve results. We
conjecture that 6 hours of additional data is not too signif-
icant. As such, we opted to keep things simple and trained
ID specific models.
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