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In this Supplementary Materials, we provide expanded
details on our analyses and additional experimental results.
This section encompasses four key appendices: Appendix
1 delves into the notations used throughout our study. Ap-
pendix 2 describes the algorithm we adopted. Appendix 3
shows the sensitivity of two fixed thresholds, specifically
τvit and τcnn, providing an in-depth analysis of their im-
pact. Appendix 4 presents additional experiment results.

1. Notations
We present the notations commonly employed in our
method, as outlined in Tab. 1.

2. Algorithm
In summary, the whole algorithm to train the proposed ECB
is shown in Algorithm 1.

3. Sensitivity of threshold τvit and τcnn

In the semi-supervised domain adaptation (SSDA) scenario,
we assess the performance sensitivity of our method on the
CNN branch by varying the threshold values τvit and τcnn
in the rel→clp scenario under 3-shot setting on Domain-
Net [13]. Specifically, we select threshold values of {0.6,
0.7, 0.8, 0.85, 0.9, and 0.95} for our analysis as shown in
Fig. 1. In total, 36 experiments are conducted to gauge the
impact of these thresholds on our approach. Notably, the
optimal performance of 87.4% is attained when τvit = 0.6
and τcnn = 0.9. This suggests that ViT’s predictions tend
to generate pseudo labels more confidently than those of
CNN during the training phase. Thus, a lower ViT thresh-
old (τvit = 0.6) not only boosts the number of pseudo la-
bels but also produces reliable ones to improve the guidance
of the CNN branch more effectively. Conversely, the CNN
branch shows less certainty with unlabeled target samples,
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Figure 1. We evaluated our method’s performance on the CNN
branch by adjusting τvit and τcnn to the values {0.6, 0.7, 0.8,
0.85, 0.9 and 0.95}. All experiments were conducted in the SSDA
scenario under 3-shot setting of rel→clp task.

requiring a higher threshold (τcnn = 0.9). Furthermore, in
the case τvit = 0.85 and τcnn = 0.95, we observe consider-
able performance effectiveness. A stricter threshold for the
CNN branch is essential to avoid introducing noise pseudo
labels into the ViT branch, which in turn significantly im-
proves the ViT branch’s performance. Nevertheless, opting
for a high threshold for both two branches can lead to over-
looking significant information in the unlabeled target do-
main, rendering it less effective in addressing data bias. As
a result, we have chosen the thresholds of τvit = 0.6 and
τcnn = 0.9 for all our experiments.

4. Additional Experiment Results
4.1. Experiments Setup

Dataset Details. DomainNet is one of the largest and most
diverse datasets for domain adaptation. It contains 596, 010
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Notations Descriptions

DS The set of source samples.

xS
i The i-th sample in the source domain.

ySi The label of the i-th sample in the source domain.

NS The number of source samples.

DTl
The set of labeled target samples.

xTl
i The i-th sample in the labeled target domain.

yTl
i The label of the i-th sample in the labeled target domain.

NTl
The number of labeled target samples.

DTu
The set of unlabeled target samples.

xTu
i The i-th unlabeled target sample in the target domain.

yTu
i The label of the i-th sample in the unlabeled target domain.

NTu
The number of unlabeled target samples.

Dl The set of labeled samples.

xl
i The i-th labeled sample.

yli The label of the i-th labeled sample.

Nl The number of labeled samples.

Augw(·) The weak augmentation.

Augstr(·) The strong augmentation.

xTu
i,w The weakly augmented i-th unlabeled target sample.

xTu
i,str The strongly augmented i-th unlabeled target sample.

E1(·;θE1
) The ViT encoder.

E2(·;θE2
) The CNN encoder.

F1(·;θF1
) The classifier of ViT branch.

F2(·;θF2
) The classifier of CNN branch.

pl1(x
l
i) The ViT branch’s probability on the labeled sample xl

i.

pl2(x
l
i) The CNN branch’s probability on the labeled sample xl

i.

pfind1 (xTu
i ) The probability output of F1 with ViT encoder E1 on the

unlabeled target sample, xTu
i .

pfind2 (xTu
i ) The probability output of F2 with ViT encoder E1 on the

unlabeled target sample, xTu
i .

pconq1 (xTu
i ) The probability output of F1 with CNN encoder E2 on the

unlabeled target sample, xTu
i .

pconq2 (xTu
i ) The probability output of F2 with CNN encoder E2 on the

unlabeled target sample, xTu
i .

τvit The fixed threshold of vit→cnn.

τcnn The fixed threshold of cnn→vit.

q̂vi The pseudo label generated by the ViT branch on the
weakly unlabeled target sample xTu

i,w.

pc(xTu
i,str) The CNN branch’s probability on the strongly unlabeled

target sample xTu
i,str.

q̂ci The pseudo label generated by the CNN branch on the
weakly unlabeled target sample xTu

i,str.

pv(xTu
i,str) The ViT branch’s probability on the strongly unlabeled tar-

get sample xTu
i,str.

Table 1. The notations commonly employed in our method.

images distributed across 345 categories and 6 domains:
Clipart (clp), Infograph (inf ), Painting (pnt), Quickdraw

Algorithm 1 The ECB algorithm

1: Data setting:
• The labeled source data DS = {(xS

i , y
S
i )}

NS
i=1.

• The labeled target data DTl
= {(xTl

i , yTl
i )}NTl

i=1 . No-
tably, DTl

is empty in UDA scenario.

• The unlabeled target data DTu = {(xTu
i , yTu

i )}NTu

i=1 .
Note: The labeled data Dl = DS ∪ DTl

.

2: Architectures:
The ViT branch: a ViT encoder E1(·;θE1) and a clas-
sifier F1(·;θF1).
The CNN branch: a CNN encoder E2(·;θE2

) and a
classifier F2(·;θF2

).

3: Hyperparameters: Fixed thresholds τvit and τcnn, the
number of training interations T , learning rates for ViT
and CNN, ηvit and ηcnn.

4: Traning strategy:
5: for t←1 to T do
6: # Supervised Training

θE1
, θF1

← ηvit∇Lsup
vit ;

θE2 , θF2 ← ηcnn∇Lsup
cnn;

7: # Finding to Conquering
8: ▷ Finding Stage

θF1
, θF2

← ηvit∇Lfind;
9: ▷ Conquering Stage

θE2 ← ηcnn∇Lconq;
10: # Co-training
11: ▷ The ViT branch teaches the CNN branch

θE2
, θF2

← ηcnn ∇Lunl
vit→cnn;

12: ▷ The CNN branch teaches the ViT branch
θE1 , θF1 ← ηvit ∇Lunl

cnn→vit;
13: end for

14: Inference: ŷTu
i = argmax

(
F2(E2(x

Tu
i ))

)
.

(qdr), Real (rel), and Sketch (skt). In the context of un-
supervised domain adaptation (UDA), we encounter sig-
nificant labeling noise within its full version. This is par-
ticularly evident in some classes on certain domains with
many mislabeled outliers, as demonstrated in COAL [20]
and SENTRY [14]. Rather than using the full set, we opt
for a subset from DomainNet featuring 40 frequently ob-
served classes across 4 domains: rel, clp, pnt, and skt, en-
compassing all 12 possible domain shifts. In the context of
SSDA, a subset of the DomainNet dataset has been selected,
focusing specifically on 126 categories out of the original
345. The reduced number of categories in this subset still
encompasses a wide range of objects and themes, ensuring
that the dataset remains complex and challenging for SSDA
research. Office-Home [15] is a diverse dataset designed for
domain adaptation and transfer learning research, contain-



Method rel→clp rel→pnt rel→skt clp→rel clp→pnt clp→skt pnt→rel pnt→clp pnt→skt skt→rel skt→clp skt→pnt Mean

MCD [16] 62.0 69.3 56.3 79.8 56.6 53.7 83.4 58.3 61.0 81.7 56.3 66.8 65.4
JAN [11] 65.6 73.6 67.6 85.0 65.0 67.2 87.1 67.9 66.1 84.5 72.8 67.5 72.5

DANN [3] 63.4 73.6 72.6 86.5 65.7 70.6 86.9 73.2 70.2 85.7 75.2 70.0 74.5
COAL [20] 73.9 75.4 70.5 89.6 70.0 71.3 89.8 68.0 70.5 88.0 73.2 70.5 75.9

InstaPBM [8] 80.1 75.9 70.8 89.7 70.2 72.8 89.6 74.4 72.2 87.0 79.7 71.8 77.8
SENTRY [14] 83.9 76.7 74.4 90.6 76.0 79.5 90.3 82.9 75.6 90.4 82.4 74.0 81.4
RHWD [18] 84.8 76.9 75.2 91.8 75.6 81.2 91.9 84.6 76.1 91.3 83.2 74.6 82.0
GSDE [22] 82.9 79.2 80.8 91.9 78.2 80.0 90.9 84.1 79.2 90.3 83.4 76.1 83.1
ECB(CNN) 84.7 83.8 79.7 91.6 84.0 82.5 91.0 83.2 79.2 86.1 82.9 81.6 84.2

Table 2. Accuracy (%) on DomainNet of UDA methods. ECB (CNN) represents the performance of our CNN branch when applied to
ResNet-50. To facilitate easy identification, the best and second-best accuracy results are highlighted in bold and underline, respectively.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean

1-shot

ENT [4] 52.9 75.0 76.7 63.2 73.6 73.2 63.0 51.9 79.9 70.4 53.6 81.9 67.9
MME [17] 59.6 75.5 77.8 65.7 74.5 74.8 64.7 57.4 79.2 71.2 61.9 82.8 70.4

DECOTA [23] 42.1 68.5 72.6 60.3 70.4 70.7 60.0 48.8 76.9 71.3 56.0 79.4 64.8
CDAC [9] 61.2 75.9 78.5 64.5 75.1 75.3 64.6 59.3 80.0 72.7 61.9 83.1 71.0

CDAC+SLA [24] 63.0 78.0 79.2 66.9 77.6 77.0 67.3 61.8 80.5 72.7 66.1 84.6 72.9
ProML [6] 64.5 79.7 81.7 69.1 80.5 79.0 69.3 61.4 81.9 73.7 67.5 86.1 74.6

ECB (CNN) 72.9 88.3 89.6 84.8 91.3 89.5 82.9 71.2 89.9 85.5 75.4 92.0 84.4

3-shot

ENT [4] 61.3 79.5 79.1 64.7 79.1 76.4 63.9 60.5 79.9 70.2 62.6 85.7 71.9
MME [17] 63.6 79.0 79.7 67.2 79.3 76.6 65.5 64.6 80.1 71.3 64.6 85.5 73.1

DECOTA [23] 64.0 81.8 80.5 68.0 83.2 79.0 69.9 68.0 82.1 74.0 70.4 87.7 75.7
CDAC [9] 65.9 80.3 80.6 67.4 81.4 80.2 67.5 67.0 81.9 72.2 67.8 85.6 74.8

CDAC+SLA [24] 67.3 82.6 81.4 69.2 82.1 80.1 70.1 69.3 82.5 73.9 70.1 87.1 76.3
ProML [6] 67.8 83.9 82.2 72.1 84.1 82.3 72.5 68.9 83.8 75.8 71.0 88.6 77.8

ECB (CNN) 78.7 90.2 91.3 85.2 90.4 91.0 83.9 76.8 91.2 85.6 77.6 92.8 86.2

Table 3. Accuracy (%) on Office-Home of SSDA methods using a ResNet-34 serving as a backbone across different domain shifts.

ing around 15, 500 images from 65 categories of everyday
objects. It includes 4 significantly different domains: Art
(A), Clipart (C), Product (P ), and Real World (R). This
variety in domains provides a challenging testbed for al-
gorithms aiming to generalize across different visual do-
mains. Office-31 [21] is an earlier standard dataset for do-
main adaptation, which includes 4, 110 images across 31
categories collected from an office environment. It con-
sists of three distinct domains: Amazon (A), with 2, 817
images from amazon.com product listings; Webcam (W ),
consisting of 795 images taken with a webcam; and DSLR
(D), which includes 498 images captured with a digital SLR
camera. Each domain presents unique challenges regarding
image quality, lighting, and backgrounds.
Implementation Details. In this section, we delve deeper
into the specifics of our implementation. Our hybrid model
utilizes the ViT/B-16 [2] for the ViT encoder E1. The
ResNet [5] and AlexNet [7] for the CNN encoder E2.
These all are initialed pre-training on the ImageNet-1K [1].
Specifically, in the context of unsupervised domain adap-
tation (UDA), we have chosen ResNet-50 as our primary
network for E2, aligning with methodologies in prior stud-
ies [3, 14, 16, 18, 20]. Following the evaluation protocol

of established SSDA methods [4, 9, 10, 17], we employ
ResNet-34 to evaluate on both the DomainNet and Office-
Home dataset, while AlexNet is chosen for Office-31 evalu-
ations. We are following ViT encoder E1 and CNN encoder
E2 by two different classifiers, F1 and F2, each consisting
of two fully-connected layers followed by the softmax func-
tion. Our ECB approach uses stochastic gradient descent as
the optimizer for two branches, maintaining a momentum
of 0.9 and a weight decay of 0.0005. Acknowledging the
distinct architectures of the ViT and CNN branches, we ini-
tially set their learning rates at 1e − 4 and 1e − 3, respec-
tively. Following [17], we employ the learning rate sched-
uler with the gamma and power parameters set to 1e − 4
and 0.75, respectively. We set the same mini-batch to 32
for all labeled and unlabeled samples. Due to ViT’s out-
standing properties, vit → cnn needs to be provided with
more information for the CNN branch, leading to the con-
fidence threshold for pseudo-label selection at τvit = 0.6.
To prevent the CNN branch from introducing noise for ViT,
we set a higher threshold τcnn = 0.9 to get reliable pseudo
labels. The warmup phase for both branches on Dl under-
goes a fine-tuning process across 100, 000 iterations. Sub-
sequently, we train 50, 000 iterations for our approach.



W→A D→A MeanMethod 1shot 3shot 1shot 3shot 1shot 3shot

ENT [4] 50.7 64.0 50.0 66.2 50.4 65.1
MME [17] 57.2 67.3 55.8 67.8 56.5 67.6
STar [19] 59.8 69.1 56.8 69.0 58.3 69.1

MVCL [12] 56.7 69.0 59.3 69.1 58.0 69.1
CDAC [9] 63.4 70.1 62.8 70.0 63.1 70.0

G-ABC [10] 67.9 71.0 65.7 73.1 66.8 72.0
ECB (CNN) 77.9 85.2 76.3 84.0 77.1 84.6

Table 4. Accuracy (%) on Office-31 of SSDA methods in both
1-shot and 3-shot settings. AlexNet is used as the feature extractor
for the CNN branch.

4.2. Comparison Results

Results on DomainNet under UDA setting. We conduct
a series of 12 experiments on the subset of DomainNet. As
detailed in Tab. 2, the ECB (CNN) outperforms the SOTA
method GSDE [22] by an increased margin of +1.1% in av-
erage accuracy, with an overall accuracy of 84.2%. Addi-
tionally, our method significantly surpasses others in several
specific domain transitions. Notably rel→pnt, clp→pnt
and skt→pnt improve accuracy by +4.6%, +5.8%, and
+5.5%, compared to the second-best. However, we face ob-
stacles in the skt→rel transition, where our method’s accu-
racy is -5.2% lower than the RHWD [18] method.
Results on Office-Home under SSDA setting. The per-
formance of our method on the Office-Home dataset, un-
der both 1-shot and 3-shot settings, is showcased in Tab. 3.
The results clearly demonstrate that our classification out-
comes exceed prior methods in all domain adaptation sce-
narios presented. Notably, the ECB method improves an
average classification accuracy that surpasses the nearest-
competitor ProML [6] by a notable +9.8% in the 1-shot set-
ting. Furthermore, we continue to impress with an average
accuracy increase of +8.4% under the 3-shot setting.
Results on Office-31 under SSDA setting. We use
AlexNet as a backbone followed previous SSDA methods
[9, 10, 12, 17]. As demonstrated in Tab. 4, our method con-
sistently outperforms all other domain adaptation scenarios
regarding classification results on the target set. Remark-
ably, our proposed method achieves an average classifica-
tion accuracy of 84.6% under the 3-shot setting. This result
surpasses the nearest method G-ABC [10] by +12.6%. Fur-
thermore, our method maintains a competitive edge with a
+10.3% higher performance even in the 1-shot setting. Re-
veals that our approach is not significantly affected by the
CNN encoder architecture.
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