
A. Super-keypoints discovering and learning
Given a pretrained feature extractor, we aim to cluster the prototypes of keypoints from all the base categories into super-
keypoints. In this section, to indicate the category of a keypoint, we add the superscript y in its keypoint and prototype
notation: jyr and wy

r denote the rth keypoint and its corresponding prototype of a category y. The set of all prototypes are
then Wbase =

⋃
y∈Cbase

{wy
r}

Ty

r=1.
We adopt the k-nearest neighbor based density peaks clustering [2, 7] since it does not requires the number of clusters to

be known in advance. Note that two keypoints cannot be in the same cluster if they belong to the same category or they are
two far from each other. Hence, we define for each keypoint jyr a set V (jyr ) that contains its valid neighbors:

V (jyr ) = {j
ỹ
r̃ |ỹ ̸= y, r̃ ∈ {1, . . . , Tỹ},

wy
r
⊤wỹ

r̃

∥wy
r∥∥wỹ

r̃∥
≥ ξ}, for jyr ∈Wbase,

where ξ is a threshold. In this work, we set ξ to 0.8.
We compute the density ρyr for each keypoint jyr as follow:

ρyr =
1

|KNN(jyr )|
∑

jỹr̃∈KNN(jyr )

wy
r
⊤wỹ

r̃

∥wy
r∥∥wỹ

r̃∥
, for jyr ∈ {1, . . . , T},

where KNN(j) is the set of min(k, |V (jyr )|) nearest valid neighbors of jyr .
Intuitively, the density of a keypoint measures the strength of the connections between the keypoint and its nearest valid

neighbors. Having higher density equivalents to having higher chance to be a cluster center. We gradually take out the
keypoint with the highest density to be a new cluster center and assign its valid neighbors to the cluster. Algorithm 1 shows
how to infer cluster assignments for the keypoints.

Algorithm 1 Clustering keypoints in to super-keypoints

Input: clustering densities: {ρyr}
Ty

r=1,y∈Cbase
, sets of valid neighbors of keypoints: {V (jyr )}

Ty

r=1,y∈Cbase
.

Initialization: set of unassigned keypoints A = {jyr }
Ty

r=1,y∈Cbase
, cluster count L = 0.

While |A| > 0:
jyr ← argmax

jyr∈A

ρyr ; ▷ Take out the keypoint with highest density

remove jyr from A;
L← L+ 1;
zyr ← L;
B ← {y}; ▷ B is the set of categories of keypoints in the underlying cluster
For jỹr̃ ∈ A:

If jỹr̃ ∈ V (jyr ) and ỹ /∈ B:
remove jỹr̃ from A;
zỹr̃ ← L;
B ← B ∪ {ỹ};

Return: cluster assignments: {zyr }
Ty

r=1,y∈Cbase
, number of clusters (super-keypoints): L.

B. Detailed expectation maximization algorithm in novel category adaptation
Recall section 5.1 in the main paper, we aim to estimate the keypoint prototypes for a novel category y, given that we have
estimated the parameters for the set of super-keypoints M = {µ1, µ2, · · · , µL}.

The keypoint prototypes can be estimated by maximizing the following objective:

LMAP =

Ty∑
r=1

log p(wr|{oi
r}Ki=1,M) =

Ty∑
r=1

log

L∑
zr=1

p(wr, zr|{oi
r}Ki=1,M). (1)



where wr is the prototype for the rth keypoint, {oi
r}Ki=1 is the keypoint features extracted from K support images, and

M = {µ1, µ2, · · · , µL} are the super-keypoints’ parameters, and zr is the super-keypoint assignment of the keypoint. Here,
we marginalize over all possibilities of the super-keypoint assignment zr as we do not know which super-keypoint should the
keypoint belong to in practice.

To deal with missing random variable zr, we adopt the expectation-maximization algorithm, which alternates between es-
timating the super-keypoint assignments of novel keypoints {zr}

Ty

r=1 (the expectation step) and optimizing for the prototypes
{wr}

Ty

r=1 with the prior encoded in the assigned super-keypoints (the maximization step).
We introduce qr(zr), a variational distribution that approximates the posterior p(zr|wr, {oi

r}Ki=1,M) over the super-
keypoint assignment for the rth keypoint. We then derive the lower bound for LMAP as follows:

LMAP =

Ty∑
r=1

log p(wr|{oi
r}Ki=1,M)

=

Ty∑
r=1

L∑
zr=1

qr(zr) log p(wr|{oi
r}Ki=1,M)

=

Ty∑
r=1

L∑
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qr(zr) log
p(wr, zr|{oi

r}Ki=1,M)

p(zr|wr, {oi
r}Ki=1,M)

=

Ty∑
r=1

L∑
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qr(zr) log
qr(zr)

p(zr|wr, {oi
r}Ki=1,M)

p(wr, zr|{oi
r}Ki=1,M)

qr(zr)

=

Ty∑
r=1

DKL(qr(zr) || p(zr|wr, {oi
r}Ki=1,M))︸ ︷︷ ︸

Kullback-Leibler (KL) divergence terms

+

Ty∑
r=1

Eqr(zr)[log
p(wr, zr|{oi

r}Ki=1,M)

qr(zr)
]︸ ︷︷ ︸

lower bound

.

The lower bound can be written as:

Lower bound =

Ty∑
r=1

Eqr(zr)[log p(wr, zr|{oi
r}Ki=1,M)] +

Ty∑
r=1

H(qr(zr)), (2)

whereH(qr(zr)) = −Eqr(zr)[qr(zr)] is the entropy of qr.

B.1. Expectation step

In this step, we aims to find the most likely super-keypoint for each novel keypoint, i.e., we find qr(zr) that best approximates
the posterior p(zr|wr, {oi

r}Ki=1,M). Since LMAP does not depend on qr(zr), instead of minimizing the KL divergence
between the variational distribution and the true posterior, we maximize the lower bound term for qr(zr). Also note that
keypoints of the same category must be assigned to different super-keypoints, so we constrain our optimization problem as
follows:

maximize
qr(zr), r∈{1,...,Ty}

Ty∑
r=1

Eqr(zr)[log p(wr, zr|{oi
r}Ki=1,M)]−Eqr(zr)[log qr(zr)]︸ ︷︷ ︸

H(qr(zr))

subjects to qr(zr = z) ∈ {0, 1} and
Ty∑
r=1

qr(zr = z) ≤ 1 for z ∈ {1, . . . , L}.

The constraints are introduced to reflect the nature of our task: they ensure that the novel keypoints are aligned with
different super-keypoints. The constraints also make the entropy terms H(qr(zr)) in the lower bound become constant
with respect to {qr(zr)}

Ty

r=1. The objective is now equivalent to find the optimal bipartite matching between the novel
keypoints and the super-keypoints such that the sum of log joint probability log p(wr, zr|{oi

r}Ki=1,M) of the matching pairs
are maximized. Below we show how to evaluate the log joint probability.



The log joint probability log p(wr, zr|{oi
r}Ki=1,M) can be split into two terms:

log p(wr, zr|{oi
r}Ki=1,M) (3)

= log p(wr|zr, {oi
r}Ki=1,M) + log p(zr|{oi

r}Ki=1,M) (4)

The first term is the posterior over the keypoint prototype given features extracted from the support samples and the
super-keypoint assignment:

p(wr|zr, {oi
r}Ki=1,M) = p(wr|{oi

r}Ki=1, µzr ) (5)

=
p(wr, {oi

r}Ki=1|µzr )

p({oi
r}Ki=1|µzr )

(6)

=
p({oi

r}Ki=1|wr)p(wr|µzr )∏K
i=1 p(o

i
r|µzr )

(7)

=

∏K
i=1N (oi

r|wr, ϕ
2)×N (wr|µzr , σ

2)∏K
i=1N (oi

r|µzr , ϕ
2 + σ2)

. (8)

Here p(oi
r|µzr ) is computed by marginalizing:

∫
wr

p(oi
r|wr)p(wr|µzr )dwr =

∫
wr
N (oi

r|wr, ϕ
2)N (wr|µzr , σ

2)dwr =

N (oi
r|µzr , ϕ

2 + σ2)
The second term is the posterior over the super-keypoint assignment given features extracted from support samples:

p(zr|{oi
r}Ki=1,M) =

p({oi
r}Ki=1|µzr )p(zr)∑L

z=1 p({oi
r}Ki=1|µz)p(z)

(9)

=

∏K
i=1N (oi

r|µzr , ϕ
2 + σ2)× p(zr)∑L

z=1

∏K
i=1N (oi

r|µz, ϕ2 + σ2)× p(z)
. (10)

The prior over the super-keypoints p(z) is assumed to be uniform or estimated as statistic from base keypoints. We do not
observe any difference in performance of the two choices.

As we can see that, the evaluation for the joint probability log p(wr, zr|{oi
r}Ki=1,M) can be done independently for each

novel keypoint without accessing to coordinate information of the keypoints. Hence, the simple matching cannot perform
complex reasoning about their correlation as well as the poses of object. In the main paper, we refer to this matching method
as the simple matching.

B.2. Maximization step

After finding the optimal super-keypoint assignments z⋆r for each novel keypoint, the optimal keypoint prototype wr is then:

wMAP
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log p(wr, z
⋆
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r}Ki=1,M) (11)

= argmax
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r
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r
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Setting the derivative of the objective with respect to wr to zero, we obtain:

wMAP
r =

1
K

1
ϕ2

∑K
i=1 o

i
r +

1
σ2µz⋆

r

1
ϕ2 + 1

σ2

(18)

= α
1

K

K∑
i=1

oi
r + (1− α)µz⋆

r
, (19)

where α =
1
ϕ2

1
ϕ2 + 1

σ2
. In this work, we set the hyperparameters ϕ and σ such that α = 0.5, which balances the effect of visual

cues from support samples and the prior knowledge from the super-keypoint.

C. Matching keypoints and super-keypoints with optimal transport
Given the score matrix S, we resort to optimal transport to find the maximum score matching between the keypoints and the
super-keypoints, i.e., finding a transport matrix Q such that it maximizes the inner product ⟨Q,S⟩. Typically, for an image of
category y, the number of keypoints is smaller than the number of the available super-keypoints, i.e. Ty < L. Hence, there are
L− Ty super-keypoints that cannot be matched with any keypoint. Following [5], we introduce a dummy keypoint to match
with the redundant super-keypoints. An augmented score maxtrix S̄ is then constructed by appending to S an additional row,
representing the matching scores between the dummy keypoint and the super-keypoints:

S̄r,z = Sr,z, for r, z ∈ {1, . . . , Ty} × {1, . . . , L},
S̄Ty+1,z = π, for z ∈ {1, . . . , L},

where π is a learnable parameter. The matching problem is now extended to finding the optimal transport matrix Q̄⋆ ∈
R(Ty+1)×L:

Q̄⋆ = argmax
Q̄

⟨Q̄, S̄⟩,

subject to Q̄1L = a, Q̄⊤1Ty = b,

where a =
1

L
[1Ty , L− Ty]

⊤ and b =
1

L
1L.

Here 1d denotes all-one vector of dimension d. The constraints ensure that each keypoint is matched to one super-keypoint
and vice versa, while the dummy keypoint is able to match with L − Ty super-keypoints. Q̄⋆ can be solved efficiently with
the Sinkhorn algorithm [1], which is differentiable and can be used to train the network end-to-end on the base categories.
After obtaining the optimal Q̄⋆, we simply discard its last row to produce Q⋆, which is used in the estimation of keypoint
prototype wESCAPE

r .

D. Training matching network
After discovering super-keypoints from the base keypoints, we are ready to train our matching network. Specifically, for a
base category y ∈ Cbase with interested keypoints {jr}

Ty

r=1, its keypoints have the corresponding super-keypoints {zr}
Ty

r=1.
Let S̄i,y denote the score matrix computed for an annotated sample (Ii, P i) of y, and let Q̄i,y denote the optimal transport
matrix for S̄i,y . We train the matching network with the following loss:

LSuperGlue = −
1

n

∑
y∈Cbase

∑
(Ii,P i)∈Dy

base

[

Ty∑
r=1

log Q̄i,y
r,zr +

∑
z∈−Zy

log Q̄i,y
Ty+1,z],

where −Zy = {1, . . . , L} \ {zr}
Ty

r=1 is the set of super-keypoints that are not assigned to any keypoints of y, and so they are
matched with the dummy keypoint. Intuitively, we minimize the negative log-likelihood of the correct assignments.

E. Architecture of matching network
As in [5], our matching network relies heavily on the attention mechanism [6]. Below we provide a background on the
attention and show how we leverage it in the design of our matching network.



E.1. Preliminaries: attention

An attention function operates on a set of queries and a set of key-value pairs. It outputs a set of features with the same
number of elements as the queries. Suppose that the queries, keys and values are respectively organized into the matrices
Xq ∈ Rq×d,Xk ∈ Rk×d,Xv ∈ Rk×d. The attention function is then:

Attention(Xq,Xk,Xv) = softmax(
XqX

⊤
k√

d
)Xv.

Intuitively, for each query, the output is a weighted sum of the values in which the weight for a value is obtained by measuring
the strength of the connection between the query and the corresponding key. In this way, a query can ‘attend’ to all the key-
value pairs.

Multi-head attention. We adopt the multi-head attention from [6]. A multi-head attention first linearly projects the queries,
keys and values inputs into multiple versions and applies attention to each of them. It then concatenates the outputs of the
attentions and linearly projects it one more time.

Multi-Head-Attention(Xq,Xk,Xv) = Concat(head1, . . . , headh)O,

where headi = Attention(X(i)
q ,X

(i)
k ,X(i)

v ).

Here, a triplet (X(i)
q ,X

(i)
k ,X

(i)
v ) is the ith linearly projected version of (Xq,Xk,Xv); O is a weight matrix.

E.2. Self-attention and cross-attention layers

The architecture of our matching network involves two parts: self-attention and cross-attention. The self-attention is simply
letting a sequence to attend to itself whereas the cross-attention is letting a sequence to attend to another one. We also
leverage residual connections, layer normalization and linear projection in our designs. Fig. 1 shows the architecture of the
self-attention and cross-attention layers.

E.3. Matching network

Our matching network takes two sequences of features as inputs: the keypoint features {ur}
Ty

r=1 and the super-keypoint
features {vz}Lz=1. Let us organize {ur}

Ty

r=1 and {vz}Lz=1 into two matrices U ∈ RTy×d and V ∈ RL×d respectively. The
matching network transforms the two sequences as follows:

U(0) = U, V(0) = V

Û(i−1) = Self-Attention(2i)(U(i−1)), i = 1 . . . U

V̂(i−1) = Self-Attention(2i+1)(V
(i−1)), i = 1 . . . U

U(i) = Cross-Attention(2i)(U(i−1),V(i−1)), i = 1 . . . U

V(i) = Cross-Attention(2i+1)(V
(i−1),U(i−1)), i = 1 . . . U

U⋆ = UU , V⋆ = VU

The output of the matching network {u⋆
r}

Ty

r=1 and {v⋆
z}Lz=1 are rows of U⋆ and V⋆ respectively.

To implement the network, we modified the code from https://github.com/lucidrains/vit-pytorch/
blob/main/vit_pytorch/vit_1d.py. We also adopt the default layer configuration from the above code, summa-
rized in Tab. 1.

F. More experiments
Data augmentation for training includes random scaling ([−15%, 15%]) and random rotation ([−15◦, 15◦]). We train our
network with Adam optimizer [4] for 60 epochs. The learning rate is initialized as 5e−4 and scheduled to 5e−5, 5e−6 at
epoch number 40, 50 respectively. With one GeForce GTX 1080 Ti, the pretraining for the feature extractor with batch size
32 takes roughly 3 hours whereas the training of the matching network with batch size 16 takes 10 hours.

https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_1d.py
https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_1d.py
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Figure 1. Architecture of the self-attention block and the cross attention block. MLP is a block of a linear projection, GELU activation [3]
and another linear projection.

Table 1. Configuration of the matching network.

Number of layers U Hidden dim MLP dim Heads

6 1024 2048 8

Table 2. Cross supercategory results.

Method Human body Human face Vehicle Furniture Average

POMNet 73.82 79.63 34.92 47.27 58.91
CapeFormer 83.59 82.76 44.02 47.38 64.44

ESCAPE 80.60 84.13 41.39 55.49 65.29

F.1. Cross super-category

Similar to ‘dummy keypoint’ (cf . Sec. C.1 in supp), ESCAPE can generalize to cross super-category setting by utilizing a
‘dummy super-keypoints’. This ensures that keypoints significantly different from the learned super-keypoints are matched
to the dummy one during inference, thus preventing unrelated super-keypoints from influencing query predictions. ESCAPE
exhibits superior performance as shown in the table below. This highlights the robust generalization capabilities of our
approach.
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