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1. Ground-truth 2D-to-2D correspondences

As discussed in Section 3.2 of the main paper, we use the
ground-truth 3D information of training sets provided by the
BOP challenge [10], originally sourced from MegaPose [7]
to create the 2D-to-2D correspondences for training.

For each 2D location i—the 2D center for a patch of size
14×14 of the query image—we aim to identify its corre-
sponding location i∗ in the nearest template. We achieve
this through a straightforward re-projection process. For
each 2D center in the query image, we first calculate its 3D
counterpart using the query depth map and camera intrinsics.
We then transform this 3D point into the camera view of
the nearest template using the ground-truth relative pose,
and re-project this 3D point into the template using template
camera intrinsics. If the re-projected 2D location falls inside
the template mask, we identify the nearest patch i∗ among
all patches within the template mask, as the corresponding
location for the input query patch i.

We reverse the roles of the query and the template, then
use the same process to establish 2D-to-2D correspondences
for each patch of the template.

We use color augmentation to close the real-synthetic
domain gap as done in [7], including: Gaussian blur, con-
trast, brightness, colors and sharpness filters from the Pillow
library [2]. We show in Figure 1 eight training samples
created from this process.

2. Recovering a 6D object pose

For simplicity, in this section, we denote the input tem-
plate and the input testing image before the processing step
(i.e., scaling, cropping, and padding) as T and Q, respec-
tively.

As mentioned in Section 3 of the main paper, we decom-
pose the 6D object pose into out-of-plane rotation Rae and
the affine transform Mt→q (including in-plane rotation α,
2D scale and 2D translation), which transforms the processed
template to the processed query. We detail below how we
can recover the 6D object pose from Rae and Mt→q .

First, the 3 DoF for the rotation can be recovered by

Figure 1. Training samples. For each training sample (2×2
images), we show the template image Tk (top left), the query image
Qk (top right) and the 2D-to-2D correspondences (bottom) as
discussed in Section 1.

simply combining the out-of-plane rotation Rae, annotated
alongside the nearest template, with the in-plane rotation, α,
as predicted by the network Fist:

R = RαRae

=

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 Rae .
(1)

Recovering 3 DoF for object translation in the test image
involves additional transformations, MQ and MT , for scal-
ing, cropping, and padding the input testing image Q and
the input template T , respectively. These transformations
are used to standardize the input images to a fixed size of
224×224, and can be defined as:

MT =

s 0 tx
0 s ty
0 0 1

 , (2)

where s is the scaling factor, and [tx, ty] is the 2D transla-
tion, created from the scaling, cropping, and padding applied
to the template. Similarly, we can define MQ, the transfor-
mation applied to the input testing image Q.

As shown in Figure 2, the transformation MT →Q trans-
forming a 2D point in the template T to its 2D corresponding
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Figure 2. Transformations from template T to query Q. We
show all the transformations has been applied to transform the
template T to the input testing image Q, as discussed in Section 2.

point in the query Q can be defined explicitly as:

MT →Q = MT Mt→qM
−1
Q . (3)

We can therefore use the transformation MT →Q to re-
cover the 2D projection of the object’s translation in the
query image, [cQ,x, cQ,y] given the 2D projection of ob-
ject’s translation in the template, [cT ,x, cT ,y]:cQ,x

cQ,y

1

 = MT →Q

cT ,x

cT ,y

1

 . (4)

The only missing degree is the object’s translation of the
query image in Z axis, tQ,z , which can be deduced from
tT ,z , the object’s translation of the template in Z axis,
MT →Q and the focal ratio using the following formula:

tQ,z = tT ,z ×
1

scale (MT →Q)
× fQ

fT
, (5)

where scale (MT →Q) is the 2D scale in MT →Q, which is
equal to the norm of first column of MT →Q, and f(.) is the
focal length.

Finally, we calculate the object’s translation in the query
image [tQ,x, tQ,y, tQ,z] using the query camera intrinsic
KQ: tQ,x

tQ,y

tQ,z

 = tQ,z ×

K−1
Q

cQ,x

cQ,y

1

 . (6)

3. “2D” version of the Kabsch algorithm
The classic Kabsch algorithm [5] has been commonly

used for points in a three-dimensional space. In this work, we
use a “2D” version for two-dimensional space. This allows
us to recover the affine transformation Mt→q , including the
2D scale s, in-plane rotation Rα, and 2D translation t from
two 2D-to-2D correspondences.

Let denote {(p1
T ,p

1
Q), (p

2
T ,p

2
Q)} two correspondences

that we obtain from the nearest neighbor search with the fea-
tures of Fae. Our goal is to find {s,Rα, t} which transforms
p1
T to p1

Q, and p2
T to p2

Q:

p1
Q = s×Rαp

1
T + t ,

p2
Q = s×Rαp

2
T + t .

(7)

First, we calculate the scale s from the size of two vectors
p2
Q − p1

Q and p2
T − p1

T :

s =
||p2

Q − p1
Q||

||p2
T − p1

T ||
. (8)

The rotation matrix Rα is composed of cos(α) and
sin(α), and is defined as:

Rα =

[
cos(α) − sin(α)
sin(α) cos(α)

]
, (9)

where cos(α) and sin(α) are the dot product and cross prod-
uct respectively of vectors p2

Q − p1
Q and p2

T − p1
T :

cos(α) =

(
p2
T − p1

T
)T

.
(
p2
Q − p1

Q
)

||p2
T − p1

T ||.||p2
Q − p1

Q||
, (10)

sin(α) =

(
p2
T − p1

T
)T ∧

(
p2
Q − p1

Q
)

||p2
T − p1

T ||.||p2
Q − p1

Q||
. (11)

Given the predicted scale s and rotation matrix Rα, we
can deduce translation t:

t =
1

2

[(
p1
Q − s×Rαp

1
T
)
+
(
p2
Q − s×Rαp

2
T
)]

.

(12)

4. Additional results
4.1. Using 3D models predicted by Wonder3D

As discussed in Section 4 of the main paper, due to the
sensitivity of Wonder3D to the quality of input images, we
selected reference images from the test set of LM [4] based
on three criteria: (i) not present in the test set of LM-O [1],
(ii) the target object is fully visible and (iii) well segmented
by Segment Anything [6]. Despite these careful selections,
we observe that Wonder3D can still fail due to the low reso-
lution or the lack of “perspective” information in the input
image. Figure 4 illustrates these common failure cases of
Wonder3D where objects appear “flat” when viewed from
novel angles.

We therefore select reference images for each object,
sourced from “scene id/im id” images as follows (sorted
by “object id”): “000001/000693”, “000005/000775”,
“000006/000949”, “000008/000994”, “000009/001228”,
“000010/000289”, “000011/001069”, and “000012/000647”.
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Figure 3. 3D reconstruction by Wonder3D [8]. For each sample (2×6 images), we show the input image outlined in green (top left), the
predicted rgb (second to last column of the first row), and the second row shows the corresponding predicted normals.

Front Front left Left Front-right Right Back

Figure 4. Failure cases of Wonder3D [8]. We present common
failure cases of the Wonder3D with the “ape” and “cat” objects
from the LM-O dataset [1]. For each sample (2×6 images), we
show the input image outlined in green (top left), the predicted rgb
(second to last column of the first row), and the second row shows
the corresponding predicted normals. These objects appear “flat”
when viewed from novel angles.

Input Detection Segmentation

GT 3D model 43.3 39.7
Predicted 3D model 38.3 36.3

Table 1. CNOS [9]’s performance on LM-O dataset [1]. For this
evaluation, we use the standard protocol designed for detection and
segmentation tasks, used in Tasks 5 and 6 of the BOP Challenge of
BOP challenge [10].

Figure 3 presents additional visualizations of 3D reconstruc-
tion from a single image by Wonder3D [8], using these
images. It is important to note that the final 3D models are
reconstructed from these six views using the instant-NGP
based SDF reconstruction method [3]. The reference is de-
fined as the front view, while the five predicted views are the
front-left, left, front-right, right, and back.

We show in Table 1 CNOS’s results for both detection
and segmentation tasks when using 3D models predicted
from a single image by Wonder3D [8].

4.2. Using ground-truth 3D models

We show in Figure 5, and 6 qualitative results on chal-
lenging conditions of LM-O [1] and YCB-V [11] datasets.
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Figure 5. Qualitative results on LM-O [1]. The first column shows CNOS [9]’s segmentation. The second and third columns illustrate
the outputs of the nearest neighbor search step, which includes the nearest template (Rae) and the 2D-to-2D correspondences. The fourth
column demonstrates the alignment achieved by applying the predicted affine transform Mt→q to the template, then overlaying it on the
query input: The green contour indicates the noisy segmentation by CNOS [9], while the red contour highlights the boundary of the aligned
template. The last column show the final prediction after refinement [7].
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Figure 6. Qualitative results on YCB-V [11]. The first column shows CNOS [9]’s segmentation. The second and third columns illustrate
the outputs of the nearest neighbor search step, which includes the nearest template (Rae) and the 2D-to-2D correspondences. The fourth
column demonstrates the alignment achieved by applying the predicted affine transform Mt→q to the template, then overlaying it on the
query input: The green contour indicates the noisy segmentation by CNOS [9], while the red contour highlights the boundary of the aligned
template. The last column show the final prediction after refinement [7].
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5. Future work
As discussed in Section 4.3 of the main paper, GigaPose

fails on challenging conditions where heavy occlusions, low-
resolution segmentation, and low-fidelity CAD models are
present, as observed in the LM-O dataset. To address this
issue, incorporating additional modalities, such as depth
images, can be beneficial. Depth images, which capture
information about object geometries, can significantly en-
hance model performance under these conditions. Moreover,
although our method shows promising results in a single-
reference setting using Wonder3D [8], it requires manual
selection to achieve high-quality 3D reconstruction. There-
fore, the development of more advanced 3D reconstruction
techniques capable of generating high-quality outputs from
a single image would be particularly valuable in this context.
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