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1. ASPIRe Dataset Annotation Pipeline
We introduce a specialized system for data labeling that uniquely combines the power of visual and linguistic analysis to
generate precise and contextually rich labels for image data. By employing advanced techniques like RoIAlign for region-
specific data extraction and integrating these with language embeddings, GPT4RoI [5] transcends the conventional labeling
approach. This process, augmented by post-processing with Spacy 1 and meticulous human curation, ensures accurate data
labels.
GPT4RoI. Our initial step involves using GPT4RoI to generate textual descriptions corresponding to input bounding boxes.
GPT4RoI integrates visual and linguistic data and adeptly handles spatial instructions. During processing, GPT4RoI replaces
<regioni> tags in these instructions with results from RoIAlign, derived directly from the image"s features. This process
creates a unique fusion of region-specific data with language embeddings. For enhanced multimodal understanding, this
combination of embeddings is then interpreted by the Vicuna [6] model, a specialized instance of the LLaMA [2]. This allows
us to input bounding boxes around objects and prompt the system for detailed descriptions, covering aspects like appearance,
situation, positioning, interactions, and relationships. For instance, when we input bounding boxes around objects and ask
the system questions, such as determining the relationship between individuals in <region1> and <region2>, the system
responds with detailed, context-rich descriptions.
Post-Processing with Spacy. After generating text with GPT-4RoI, we utilize Spacy, a Python library for natural language
processing, to refine the text further. We specifically use Spacy to add grammatical tags to each word in the text. This tagging
involves identifying the grammatical role of each word and determining if it is a noun, verb, or adjective, among others.
This process is essential for understanding the sentence structure and ensuring that the text is accurate in its content and
grammatically coherent.
Human Curation and Filtering. For the final step, we rely on human expertise to ensure the highest quality of our output.
Our team carefully reviews the Spacy-processed text using a specially designed filter that helps categorize interactivity types.
This human oversight is essential for maintaining the highest standards of accuracy and relevance. It enables us to meticulously
confirm and refine the interaction types identified by the LLM, ensuring that our final label is precise.

2. Data format
Our annotations are organized following the below main structure:

1 data[{
2 "file_name": str,
3 "height": int,
4 "width": int,
5 "image_id": int,
6 "frame_index": int,
7 "video_id": int,
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8 "segments_info":[{
9 "id": int,

10 "track_id": int,
11 "category_id": int,
12 "iscrowd": 0 or 1,
13 "isthing": 0 or 1,
14 "area": int
15 }],
16 "annotations":[{
17 "bbox": [x, y, width, height],
18 "segmentation": [polygon],
19 "bbox_mode": 0 or 1,
20 "category_id": int
21 }]
22 "appearances" : [{
23 "segment_id": int,
24 "app_id": int
25 }],

26 "situations" : [{
27 "segment_id": int,
28 "sit_id": int
29 }],

30 "positions" : [{
31 "segment_id": int,
32 "segment_id": int,
33 "pos_id": int
34 }],

35 "interactions" : [{
36 "segment_id": int,
37 "segment_id": int,
38 "inter_id": int
39 }],

40 "relations" : [[
41 "segment_id": int,
42 "segment_id": int,
43 "rel_id": int
44 ]]
45 }],
46 "thing_classes": [int],
47 "stuff_situations": [int],
48 "predicate_apparances": [int],
49 "predicate_situations": [int],
50 "predicate_positions": [int],
51 "predicate_interactions": [int],
52 "predicate_relations": [int],

2.1. Basic Image Information

This section details the fundamental attributes of each image:
• file_name: The name of the image file.
• height: The height of the image in pixels.
• width: The width of the image in pixels.
• image_id: A unique identifier for the image.



• frame_index: The index of the frame within the video sequence.
• video_id: An identifier for the video or image collection to which this image belongs.

2.2. Segment Information

This section includes the segments_info key, which is a list of segments within the image. Each segment contains:
• id: Unique identifier for the segment.
• track_id: Identifier to track the segment across different frames.
• category_id: Identifier for the category of the object in the segment.
• iscrowd: A binary value indicating if the segment represents a crowd.
• isthing: A binary value indicating if the segment represents a "thing" (as opposed to "stuff" like banner, blanket, curtain,

pillow, towel).
• area: The area covered by the segment in the image.

In addition, for each entry in segments_info, we provide the corresponding masks (segmentation) and bounding
boxes (bbox), each tagged with a specific category_id in the annotations.

2.3. Interactivity Attributes

This section encompasses lists of predicate_appearances, predicate_situations, predicate_positions,
predicate_interactions, and predicate_relations for each segment. For single-actor attributes (i.e., appear-
ances and situations), the structure is as follows:
• segment_id: Identifier for the segment.
• id: Identifier for the interactivity type.

For double-actor attributes (i.e., positions, interactions, and relations), the structure includes two different segment_ids
to represent the interactivity between two segments:
• segment_id_1: Identifier for the first segment.
• segment_id_2: Identifier for the second segment.
• id: Identifier for the interactivity type.

These descriptors represent lists of integers, specifying various aspects of the subject, object, and interactivity for each
bounding box within the annotations and segments_info. For example, [1, 9, 8] in a dual-actor scenario indicates that
the second segment in segments_info is the subject, the ninth segment is the object, and they share a predicate class 8,
signifying a position/interaction/relation. Conversely, [1, 8] or [2, 0] in a single-actor scenario indicates that the second or
third segment in segments_info is associated with a class 8 or 0 predicate of appearance/situation.

3. Approximation

Table 1. Summary of annotated attributes between two actors in our ASPIRe dataset (with ✓represented as 1 and ✗as 0). appearance and
contextual situation are single-actor attributes

Position Interaction Relation
Person-Person ✓ ✗ ✓

Person-Object ✗ ✓ ✗

Object-Person ✓ ✗ ✓

Object-Object ✗ ✗ ✗

We investigate our problem among individual actors and estimate the possible pairs between two actors within these
interactivities. When examining a single attribute, two pivotal metrics arise the subject"s appearance (A) and situation (S).
When we identify a set St at a particular time t to encompass all subjects, these individual interactivities correspond to the
number of subjects, denoted as |St|. When shifting to the bipartite matching of the dual-actor, three central pillars come into
focus: position (PO), interaction (IN ), and relationship (RE). To provide further detail, we classify these interactivities into
four distinct pairs, as shown in Table 1. Each can be depicted as a pairwise matrix product, effectively capturing the presence
or absence of our central attributes.



By leveraging the unique eigenvectors of attributes that span various interactivities, our focus shifts to a set St comprising
n subjects. Specifically, the pairs are determined by combinations of bipartite subjects, which we denote as Cn

2 . We define the
possible configurations combined with this combinatorial expression for each pair with the feasible attribute vector specific
to that particular interactivity. We symbol rPP , rPO, rOP , and rOO that is the feasible attribute eigenvalues equivalented
to each row in the binary coefficients matrix, resulting in the unified equation that defines the number of pairs across the
three interactivities #pairs = Cn

2 × (rPO + rOP + rOO). In our analysis of each actor, we carefully assess both the physical
attributes of the subjects and their contextual situations. Consequently, the number of single attributes considered equals
the number of subjects, denoted as n. Conversely, interactivities related to position, interaction, and relationships involve
dual actors. To elaborate further, we categorize these interactions into four distinct pairs, as presented in Table 1. In each
pairing of dual actors, we define their roles to illustrate how various attributes manifest. These subjects are paired together in
combinations, denoted as Cn

2 . With each pair, we investigate how their interactivities influence each other, employing specific
attribute values customized for those specific interactivities.

Importantly, each type of interactivity exhibits unique characteristics that enable us to form pairs. Positions and relations
are relevant when both the subject and object are persons or when the object assumes the role of a subject and appears
with a person. On the other hand, Interaction exclusively takes place when a person serves as the subject engaging with
an object. As a result, to determine the total number of pairs within these interactions, we utilize the following formula:
#pairs = Cn

2 × (rPO + rOP + rOO), where the variable r, ranging from 1 to 3, corresponds to the attributes of the subjects
within each pair. This formula calculates the number of pairs while interactivities can influence these pairs across three distinct
types of interactions.

4. Data Sample

Appearance: orange ball
Situation: ball in competition
Position: ball in the hand of person

Appearance: white tripod
Situation: tripod in competiton
Position: ball in the yard

Appearance: person in grey t-shirt
Situation: person in competition
Position: person standing to the left of person
Interaction: person holding tripod
Relation: person is spectator of person

Appearance: person in black t-shirt
Situation: person in competition
Position: person standing to the left of person
Interaction: person catching ball
Relation: person and person are teammates

Appearance: person in black t-shirt
Situation: person in competition
Position: person standing to the right of person
Interaction: person watching ball
Relation: person and person are teammates

Appearance: person in blue dress
Situation: person in drama
Position: person standing to the right of person
Interaction: person holding umberella
Relation: person and person are sisters

Appearance: pink umbrella
Situation: umbrella in drama
Position: ball in the hand of the person

Appearance: person in blue dress
Situation: person in drama
Position: person standing to the left of person
Interaction: person holding umbrella
Relation: person and person are sisters

Appearance: blue umbrella
Situation: umbrella in drama
Position: umbrella in the front of the person

Our ASPIRe dataset

Figure 1. Our ASPIRe dataset encompasses a wide variety of scenarios, objects, and interactivities.

Fig. 1 presents selected samples from our ASPIRe dataset, notable for its comprehensive range. This dataset includes
bounding box annotations and provides detailed descriptions of interactivities across various scenarios. As outlined in Sec. 1,
each scene is annotated with precision and contextual relevance, ensuring clarity and circumventing typical ambiguities like
generic or overlapping labels found in other datasets. The interactivity within ASPIRe is categorized into five distinct types:
appearance, situation, position, interaction, and relation. This multifaceted approach to annotation makes ASPIRe uniquely
comprehensive compared to other datasets [1, 3, 4]. Our meticulous annotation process establishes ASPIRe as an invaluable
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Figure 2. Illustration of Hierarchical Interlacement Graph (HIG).

resource for enhancing the accuracy and efficacy of Visual Interactivity Understanding Algorithms.

5. Methodology
5.1. Baseline Methods

Four basic methods [3] are formulated below to assimilate information from adjacent frames, thereby incorporating temporal
information as baseline methods for our problem. At a tth frame, the feature representation of an object i is denoted as qti . Let
Q

(t1,t2)
i be the the set of queries spanning from t1 to t2, given by Q

(t1,t2)
i = {qt1i , . . . , qt2i }. Q also denotes the query tube

throughout the entire video if t1 = 0 and t2 = |V |, acting as the feature set for interactivity classification. To this end, we
employ pairwise fusion as an initial step to obtain the etij embedding:

etij = Concat(qti , q
t
j) (1)

Vanilla Approach involves the fusion of pairwise features:

F t
ij = etij · w + b (2)

where F t
ij represents the final feature after being transformed via a linear operator.

Handcrafted Filter is a filter g (i.e. Gaussian) that convolves with the concatenated feature F t
ij to capture context-specific

information. The operation is expressed as:

F t
ij =

W/2∑
k=−W/2

gk · e(t+k)
ij (3)

where hk denotes the values of the handcrafted filter at position k, and W specifies the window size, defining the temporal
range of frames considered for contextual analysis.
Convolutional Layer incorporates a trainable 1D-Convolutional layer enhances the feature extraction process. The concate-
nated embedding etij undergoes convolution with a set of learnable weights w, capturing temporal patterns:

F t
ij =

W/2∑
k=−W/2

wk · e(t+k)
ij (4)



Table 2. Comparison at different hierarchical levels of the HIG model.
Hierarchical Level Interlacement R/mR@20 R/mR@50 R/mR@100

1

Appearance 7.85 / 0.32 11.47 / 0.38 13.56 / 0.41
Situation 4.12 / 0.28 5.89 / 0.33 8.43 / 0.37
Position 8.67 / 0.22 12.34 / 0.27 16.78 / 0.31

Interaction 5.98 / 0.18 10.76 / 0.23 15.29 / 0.26
Relation 6.21 / 0.15 10.04 / 0.19 14.67 / 0.24

n/4

Appearance 9.43 / 0.39 13.58 / 0.44 15.97 / 0.48
Situation 4.76 / 0.34 6.22 / 0.39 9.67 / 0.43
Position 10.89 / 0.29 14.55 / 0.34 19.03 / 0.38

Interaction 7.34 / 0.24 12.19 / 0.29 17.42 / 0.33
Relation 7.89 / 0.21 11.76 / 0.26 16.34 / 0.30

n/2

Appearance 11.02 / 0.47 15.34 / 0.52 17.89 / 0.56
Situation 4.83 / 0.40 6.56 / 0.45 11.12 / 0.49
Position 12.11 / 0.36 16.78 / 0.41 21.45 / 0.45

Interaction 8.56 / 0.30 14.03 / 0.35 19.67 / 0.39
Relation 9.02 / 0.27 13.89 / 0.32 18.56 / 0.36

3n/4

Appearance 12.76 / 0.53 17.02 / 0.58 19.43 / 0.62
Situation 4.89 / 0.46 7.01 / 0.51 11.78 / 0.55
Position 12.45 / 0.42 18.22 / 0.47 23.67 / 0.51

Interaction 10.12 / 0.36 16.47 / 0.41 22.34 / 0.45
Relation 10.16 / 0.33 15.43 / 0.38 20.89 / 0.42

n (full)

Appearance 15.02 / 0.60 18.60 / 0.64 20.11 / 0.65
Situation 5.01 / 0.56 7.02 / 0.55 12.01 / 0.63
Position 13.02 / 0.09 24.52 / 1.33 42.33 / 1.12

Interaction 12.02 / 0.11 24.65 / 0.12 41.65 / 0.14
Relation 10.26 / 0.29 23.72 / 0.34 41.47 / 0.39

Here, w represents the weights of the convolutional layer.
Transformers leverage the Transformer architecture, which is to model complex interactivities. Queries are subjected to the
cross-attention mechanism to enhance features:

F t
ij = Transformer

(
etij , [e

t−W/2
ij , . . . , e

t+W/2
ij ]

)
(5)

After transforming the concatenated feature via one of the four baseline approaches above, the resulting output Itij between
subject i and subject j at the tth frame, within the context of multi-category classification, is represented as:

Itij = softmax
(
F t
ij

)
(6)

In cases where objects engage in multiple concurrent interactivities, we frame the problem as a multi-category classification
task, utilizing binary cross-entropy loss.
Limitations. Despite their simplicity, the limitation of the above methods lies in their ability to capture and represent temporal
information in videos. First, these filters have a fixed temporal scale, making it challenging to capture information at multiple
temporal resolutions in a single design. Next, they do not inherently capture the spatial or hierarchical relationships between
different frames in a video. Therefore, they lack positional information. Those methods typically span their primary operations
via a temporal window size. As a result, they have a limited receptive field, which means they can only effectively capture
long-range temporal dependencies in videos if they use very deep networks.



5.2. Hierarchical Interlacement Graph

The Limitations of The Monolithic Interlacement Graphs. Monolithic Interlacement Graphs undergo computational
bottlenecks when edges span the entirety of a video containing T frames with n objects. Due to their structure, the number of
correct edge hypotheses is restricted by the constraint Ecorrect ≤ 2n. This implies that each node can correctly associate with at
most two other nodes. Hence, the maximum number of potential edges is Epotential =

n(n−1)
2 , indicating a quadratic growth

pattern and presenting challenges. Firstly, the computational imposed by this graph limits its scalability, particularly when
processing extensive video sequences or handling a significant number of objects. Secondly, while Monolithic Interlacement
Graphs efficiently control short-range dependencies, they struggle to capture sparse long-range interactivities. Finally, any
temporary occlusions within the frames further strengthen the complexity of understanding, increasing the risk of incorrect
interactivities.
Building Temporally-Refined Hierarchical Partitions. The Hierarchical Interlacement Graph (HIG) introduces the Hierar-
chical Clip Partitioning strategy to address these challenges. Initially, the graph initiates interactivities between consecutive
frames, capturing all the activities within two frames. When extending the temporal view, this structure recursively divides
the clip into distinct, non-overlapping temporal segments. Progressing through the hierarchy, each interlacement at level L
captures interactivities spanning more extended periods. This approach ensures that long-term interactivities are inherited
base levels. In addition, the hierarchical structure gains efficiency by converging nodes and edges, considerably reducing the
graph"s dimensions. This speeds up processing and improves clarity, particularly for objects that are temporally obscure in the
frame. Therefore, building temporally refined hierarchical partitions enables it to navigate the intricate object interactivity,
irrespective of their temporal length or complexity.
Number of Hierarchical Levels. We investigates the impact of hierarchical depth on the HIG model"s performance, as
depicted in Fig. 2. The model"s standard configuration encompasses n levels, where n equals the total number of video frames
minus one. In our ablation study, we explore the model"s performance across reduced hierarchical depths, specifically at levels
L = 1, L = n/4, L = n/2, L = 3n/4 and L = n, corresponding to the configurations shown in Fig. 2. This study aims to
ascertain the optimal number of hierarchical levels required for the HIG model to interpret the complex interactions within
a video effectively while also determining whether increasing hierarchical levels significantly boosts accuracy or leads to
overfitting.

We observe that as the hierarchical level increases, encompassing a more significant portion of the video frame, it effectively
reduces noise and leads to a higher recall rate. Tab. 2 reveals that the model can analyze and interpret video content
substantially enhanced as it progresses deeper into its hierarchical structure. The HIG model conceptualizes videos as a series
of interconnected graphs, each corresponding to a pair of frames, adeptly capturing complex interactions within the video. The
key performance indicators, specifically recall and mean recall, evaluated at different thresholds (20, 50, and 100), exhibit a
consistent upward trend with the increasing hierarchical depth. This enhancement is particularly notable in figuring out the
position at the highest hierarchical level, where there is a significant improvement.
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