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Overview

This document provides supplementary material com-

plementing the main manuscript. It is structured as fol-

lows. First, the computation of the self-consistency loss

and the ground truth generation of heatmaps are described.

Second, more quantitative and qualitative results are pro-

vided. In particular, additional metrics are reported for both

in-dataset and cross-dataset settings. Moreover, qualitative

results comparing E-FPN and FPN are shown.

1. Self-Consistency Loss
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Figure 1. In order to generate the consistency map prediction Ĉ as

well as the associated ground truth C, we first randomly select a

vulnerable point located at ps. For computing Ĉ, we measure the

similarity between the feature at ps (red block) and the features

generated from every point. Namely, we use the similarity func-

tion in [20]. As for C, we measure the consistency values between

the pixel at the ps and all pixels in B, as also described in Eq. (7)

of the manuscript.

To clarify the calculation of the self-consistency loss, we

show Figure 1, which illustrates the generation process of

the predicted and the ground-truth, Ĉ and C, respectively.

The self-consistency loss is a binary cross entropy loss be-

tween Ĉ and C.

2. Ground Truth Generation of Heatmaps

In this section, we provide more details regarding the

generation of ground-truth heatmaps, described in Section

3.1.2. Firstly, a k-th vulnerable point, denoted as pk, is se-

lected, as shown in Figure 3 (i). Secondly, we measure the
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Figure 2. Feature visualization by gradCAM [13] between E-FPN

and FPN with different integration of multi-scale layers. It shows

that E-FPN can focus better on artifacts as compared to FPN. The

setup details are provided in Table 4 as shown in the manuscript.

Method
Training Set FF++ [12]

Real Fake ACC AUC AP AR mF1

Ours w/ BI [9] ✓ 99.03 99.95 99.99 99.21 99.60

Ours w/ SBI [14] ✓ 99.04 99.96 99.99 99.29 99.64

Table 1. In-dataset evaluation on FF++ [12] reported by ACC,

AUC, AP, AR, and mF1.

height and the width of the blending mask B at the point

pk shown as orange lines in Figure 3 (ii). Using the calcu-

lated distances, a virtual bounding box is created, indicated

by the blue box in Figure 3 (iii). Then, we identify overlap-

ping boxes, illustrated by dashed-line green boxes in Figure

3 (iv), with the Intersection over Union (IoU) greater than a

threshold (t = 0.7) compared to the virtual bounding box.

A radius rk (solid purple line in Figure 3 (v)) is calculated

by forming a tight circle encompassing all these boxes. Fi-

nally, an Unnormalized Gaussian Distribution, shown as a

red circle in Figure 3 (vi), is generated with a standard de-

viation σk = 1
3rk (Eq. (4) of the manuscript). The steps are

repeated for every vulnerable point k ∈ [[1, card(P)]]. The

final H is the superimposition of all gkij .

3. Additional Results

In addition to AUC, we provide results using additional

metrics, namely, Average Precision (AP), Average Recall

(AR), Accuracy (ACC), and mean F1-score (mF1).

Table 1 and Table 2 report the results under the in-dataset

and the cross-dataset settings, respectively. Overall, it can

be seen that LAA-Net achieves better performances than

other state-of-the-art methods.



IoU(     ,     ) > 0.7

Heatmap GT𝐇

(ii) Getting virtual 

object size

(iii) Make a virtual 

bounding box

(i) Given k-th

vulnerable point

(iv) Find all other 

overlapping boxes 

of same size

(v) Find radius 𝑟𝑘 (vi) Unnormalized 

Gaussian with 𝜎𝑘 = 13 𝑟𝑘
TODO: change this 

figure to match with 

reality

𝐆𝑖𝑟

Figure 3. The generation process of ground truth heatmaps by producing using an Unnormalized Gaussian Distribution given a selected

vulnerable point.

Method Fake

Test set (%)

CDF2 DFW DFD DFDC

AUC AP AR mF1 AUC AP AR mF1 AUC AP AR mF1 AUC AP AR mF1

Xception [12] ✓ 61.18 66.93 52.40 58.78 65.29 55.37 57.99 56.65 89.75 85.48 79.34 82.29 69.90 91.98 67.07 77.57

FaceXRay+BI [9] ✓ 79.5 - - - - - - - 95.40 93.34 - - 65.5 - - -

LRNet [15] ✓ 53.20 - - - - - - - 52.29 - - - - - - -

LocalRL [3] ✓ 78.26 - - - - - - - 89.24 - - - 76.53 - - -

TI2Net [11] ✓ 68.22 - - - - - - - 72.03 - - - - - - -

Multi-attentional [21] ✓ 68.26 75.25 52.40 61.78 73.56 73.79 63.38 68.19 92.95 96.51 60.76 74.57 63.02 - - -

RECCE [2] ✓ 70.93 70.35 59.48 64.46 68.16 54.41 56.59 55.48 98.26 79.42 69.57 74.17 - - - -

SFDG [17] ✓ 75.83 - - - 69.27 - - - 88.00 - - - 73.63 - - -

EIC+IIE [8] ✓ 83.80 - - - - - - - 93.92 - - - 81.23 - - -

AltFreezing [18] ✓ 89.50 - - - - - - - 98.50 - - - - - - -

CADDM [5] ✓ 93.88 91.12 77.00 83.46 74.48 75.23 65.26 69.89 99.03 99.59 82.17 90.04 - - - -

UCF [19] ✓ 82.4 - - - - - - - 94.5 - - - 80.5 - - -

Controllable GS [7] ✓ 84.97 - - - - - - - - - - - 81.65 - - -

PCL+I2G [20] 90.03 - - - - - - - 99.07 - - - 74.27 - - -

SBI [14] 93.18 85.16 82.68 83.90 67.47 55.87 55.82 55.85 97.56 92.79 89.49 91.11 86.15 93.24 71.58 80.99

AUNet [1] 92.77 - - - - - - - 99.22 - - - 86.16 - - -

Ours (w/ BI) 86.28 91.93 50.01 64.78 57.13 56.89 50.12 53.29 99.51 99.80 95.47 97.59 69.69 93.67 50.12 65.30

Ours (w/ SBI) 95.40 97.64 87.71 92.41 80.03 81.08 65.66 72.56 98.43 99.40 88.55 93.64 86.94 97.70 73.37 83.81

Table 2. Cross-dataset evaluation in terms of AUC, AP, AR, and mF1 (%) on CDF2 [10], DFW [22], DFD [6], and DFDC [4]. Bold and

underlined highlight the best and the second-best performance, respectively. ✓symbol is used to depict methods that utilized both Real

data and Fake data for training.

3.1. Qualitative Results: EFPN versus FPN

A qualitative comparison between the proposed E-FPN

and the traditional FPN with different fusion settings is re-

ported in Figure 2. Using EfficientNet-B4 [16] (EFNB4) as

our backbone, the F(6) refers to the features extracted from

the last convolution block in the backbone. In other words,

this means that no FPN design is integrated. By gradually

aggregating features from lower to higher resolution layers,

we can observe the improvement of the forgery localization

ability for both E-FPN and FPN. More notably, E-FPN pro-

duces more precise activations on the blending boundaries

as compared to FPN. This can be explained by the fact that

the E-FPN integrates a filtering mechanism for learning less

noise. In contrast, FPN seems to consider regions outside

the blending boundary, which results in lower performance

as previously shown in Table 4 - Section 4.4 of the main

manuscript.

Figure 4. Detection of vulnerable points w/o and w/ Gaussian

noise.

3.2. Qualitative Results: Gaussian Noise

In Table 2 of the main manuscript, the performance of

LAA-Net declined significantly when encountering Gaus-

sian Noise perturbations. One possible reason is that the

introduction of noise elevates the difficulty of detecting the

vulnerable points. To confirm that, we report the inference

of the heatmap before and after applying a Gaussian Noise



on a facial image in Figure 4. As it can be observed, the

detection of vulnerable points is highly impacted with the

introduction of a Gaussian noise.

3.3. Robustness to Compression

To assess the robustness of LAA-Net to compression, we

test LAA-Net on the c23 version of FF++, and the overall

AUC is equal to 89.30%.
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