
MCD: Diverse Large-Scale Multi-Campus Dataset for Robot Perception

Supplementary Material

1. Related Works
Tab. 1 provides a detailed comparison in terms of percep-
tion modality, ground truth approach and diversity of ex-
isting datasets and shows the contributions of MCD. Most
well-annotated multi-modal datasets are biased towards au-
tonomous driving scenarios, while environment-diversified
datasets primarily focus on SLAM or reconstruction stud-
ies with limited annotations. Moreover, autonomous driv-
ing datasets often prioritize well-structured highways, over-
looking diverse settings where vehicles share unmarked sur-
faces with pedestrians. This limitation hinders the global
adoption of autonomous car solutions. Simulated datasets
and methods offer unbiased setups but suffer from a signif-
icant domain gap with real-world conditions, making them
inadequate for simulating extreme scenarios and corner
cases, which pose challenges for robotics research. MCD
aims to bridge these gaps with diverse challenges, modali-
ties, and scenarios.

Many existing datasets face challenges related to the ac-
curacy of ground truth estimates. GNSS/INS, the most
commonly used localization method for automotive vehi-
cles, often exhibits errors at the decimeter level. Terrestrial
Laser Scanner (TLS) is typically employed in conjunction
with a limited number of control points to estimate contin-
uous or sparse ground truth coordinates. On the other hand,
the Motion Capture system (MoCap) is primarily effective
indoors or in low-light conditions. Both TLS and MoCap
offer accuracy at the centimeter to millimeter level with
clear line-of-sight. Two commonly used methods for tra-
jectory estimation through point cloud matching are Normal
Distributions Transform (NDT) and Iterative Closest Point
(ICP). These methods often introduce errors in the range
of a few decimeters. Simultaneous Localization and Map-
ping (SLAM) uses onboard LIDAR sensors but may suffer
from long-term drift and is generally considered less accu-
rate, with measurement noise ranging from a few decime-
ters to several meters. The proposed survey-grade prior map
continuous time registration (SMCTR) is estimated to pro-
vide centimeter-level accuracy without any line-of-sight re-
quirements, making it a promising choice for creating large
datasets with centimeter accuracy.

2. Sensor Suites
Two sensor suites are built for data collection. The first is
mounted on an All-Terrain Vehicle (ATV) that can run up
to 35 km/h, and the second is a portable Handheld Setup
(HHS) that allows us to walk through more complex terrains
like cobbled paths or staircases. Fig. 1 presents the mobility

Figure 1. Mobile platform of each sensor suite: ATV (left) and
HHS (right).

Figure 2. The graph of calibrated extrinsics for the HHS. Each
edge is color-coded for different approaches to find their relative
extrinsics. More details are given in Sec. 3.

mode of the two sensor suites.
Data from each hardware unit is grouped into separate

rosbags so that users can download the modalities of their
interest. Tab. 2 reports the topic available for each sensor
suite and the nominal rate.

3. Calibration

The calibration process involves finding the camera intrin-
sics and the extrinsics of all sensors.

First, the Kalibr toolbox [37] is used to find the intrinsic
parameters of the D455 cameras. These intrinsic parame-



Year-Dataset Perception Modalities Groundtruth GT Method MC
C LC LN I U O Pose Map Labels

2012-KITTI [1] ✓ ✓ × × × ✓ ✓ × ✓ GNSS/INS ×
2016-NCLT [2] ✓ ✓ × ✓ × ✓ ✓ × × GNSS/INS ×
2017-Oxford RoboCar [3] ✓ ✓ × ✓ × ✓ ✓ × × GNSS/INS ×
2018-ApolloScape [4] ✓ ✓ × ✓ × × ✓ 3D ✓ GNSS/INS ✓
2019-KAIST Urban [5] ✓ ✓ × ✓ × ✓ ✓ × ✓ SLAM ×
2019-Argoverse [6, 7] ✓ ✓ × × × ✓ ✓ 2D ✓ Unspecified ✓
2019-ECP [8] ✓ ✓ × × × × × × ✓ Unspecified ✓
2019-H3D [9] ✓ ✓ × ✓ × ✓ ✓ × ✓ GPS/NDT ×
2020-NuScene [10] ✓ ✓ × ✓ × ✓ ✓ 2D ✓ GNSS/INS/ICP ✓
2020-UrbanLoco [11] ✓ ✓ × × × ✓ ✓ × ✓ GNSS/INS ✓
2020-MulRan [12] ✓ ✓ × ✓ × ✓ ✓ × × SLAM ×
2020-Waymo [13] ✓ ✓ × × × × ✓ 2D ✓ Unspecified ✓
2020-A2D2 [14] ✓ ✓ × ✓ × ✓ ✓ 3D ✓ ICP ✓
2020-A*3D [15] ✓ ✓ × × × ✓ ✓ × ✓ GNSS/INS ×
2020-Ford Multi-AV [16] ✓ ✓ × ✓ × × ✓ 3D × SLAM ×
2021-ONCE [17] ✓ ✓ × × × × × 3D ✓ Unspecified ✓
2021-Lyft [18] ✓ ✓ × × × ✓ ✓ 2D ✓ Unspecified ×
2021-CADC [19] ✓ ✓ × ✓ × ✓ ✓ × ✓ GNSS/INS ✓
2021-PandaSet [20] ✓ ✓ × ✓ × ✓ ✓ × ✓ GNSS/INS ✓
2023-Boreas [21] ✓ ✓ × ✓ × × ✓ × ✓ GNSS/INS ×
2014-ICL-NUIM [22] ✓ ✓ × × × × ✓ 3D × Simulator ×
2017-CARLA [23] ✓ ✓ × ✓ × ✓ ✓ 3D ✓ Simulator ×
2020-TartanAir [24] ✓ ✓ × ✓ × × ✓ 3D ✓ Simulator ×
2023-AIODrive [25] ✓ ✓ × ✓ × ✓ ✓ 3D ✓ Simulator ×
2012-TUM RGB-D [26] ✓ × × × × × ✓ × × MoCap ×
2016-EuRoC [27] ✓ × × ✓ × × ✓ 3D × TLS/MoCap ×
2016-TorontoCity [28] ✓ ✓ × × × × ✓ 3D ✓ Photogrammerty ×
2020-Newer College [29] ✓ ✓ × ✓ × × ✓ 3D × TLS/ICP ×
2021-Hilti [30, 31] ✓ ✓ × ✓ × × ✓ × × Control Points ✓
2021-M2DGR [32] ✓ ✓ × ✓ × × ✓ × × TLS/MoCap ×
2022-PolyU-BPCoMa [33] ✓ ✓ × ✓ × ✓ ✓ 3D × TLS ×
2022-NTU VIRAL [34] ✓ ✓ × ✓ ✓ ✓ ✓ × × TLS ×
2023-GRACO [35] ✓ ✓ × ✓ × ✓ ✓ × × GNSS/INS ×
2023-FLICAR [36] ✓ ✓ ✓ ✓ × × ✓ × × TLS ×
MCD (proposed) [34] ✓ ✓ ✓ ✓ ✓ × ✓ 3D ✓ SMCTR ✓

Table 1. C denotes camera(s), LC represents classical mechanical LIDAR, LN signifies the newer type of non-repetitive scanning LIDAR,
I indicates a raw, high-frequency inertial measurement unit, and U stands for UWB. O refers to other popular sensing modalities, such
as thermal imaging, wheel odometry, low-frequency GPS/INS, or RADAR. The ’map’ in the ground truth refers to the survey-grade map
result in either 2D or 3D, and ’Tools’ denotes the methodology employed to generate ground truth besides manual annotations.

ters are then used to find the extrinsic of the 3-camera setup
on each D455 w.r.t. each IMU available. Hence, eight 3-
camera-1-IMU calibrations are carried out, which are rep-
resented by the red edges in Fig. 2.

Next, the transform from the ouster IMU to the ouster
sensor (black edge in Fig. 2) is obtained from the datasheet.
The transform from the body frame to the UWB tags (green
edge) is measured directly via the motion capture system.
Finally, the transformation matrix from the ouster LiDAR

to the Livox sensor is obtained by aligning the LiDAR point
clouds of a room corner using the ICP method.

Finally, we perform a pose-graph optimization over the
graph in Fig. 5 to obtain the final extrinsic of all sensors and
summarize them in the calibration report.



Modality Hardware
Available ROS Topics

Rate
ATV HHS

Camera
D435i

/d435i/infra1/image rect raw
/d435i/infra1/image rect raw

- 30 Hz

D455t -
/d455t/infra1/image rect raw
/d455t/infra2/image rect raw
/d455t/color/image raw

30 Hz

D455b
/d455b/infra1/image rect raw
/d455b/infra2/image rect raw
/d455b/color/image raw

/d455b/infra1/image rect raw
/d455b/infra2/image rect raw
/d455b/color/image raw

30 Hz

IMU

Ouster OS1 /os cloud node/imu /os1 cloud node/imu 100 Hz
D435i /d435i/imu - 400 Hz
D455t - /d455t/imu 400 Hz
D455b /d455b/imu /d455b/imu 400 Hz
VN100 /vn100/imu - 400 Hz
VN200 /vn200/imu /vn200/imu 400 Hz

LiDAR
Ouster OS1 /os cloud node/points /os cloud node/points 10 Hz
Livox Mid70 /livox/lidar /livox/lidar 10 Hz

UWB Linktrack P
/ltp tag0/nlnf3
/ltp tag1/nlnf3

/ltp tag0/nlnf3
/ltp tag1/nlnf3

20 Hz

Table 2. Summary of sensing modalities, hardware units, ROS topics, and the nominal rates on each platform.

4. Coordinate System
Fig. 3 illustrates the convention of coordinate frame used
in this dataset. In this dataset, we define W as the coordi-
nate frame of the ground truth map, which is aligned with
the GPS coordinate system. The body frame B is chosen to
coincide with the VN100 IMU on the ATV and the VN200
IMU on the HHS. A time index t is attached to B to differen-
tiate the body frame at different times. It is a common prac-
tice that the body frame at initial time B0 is chosen as the
frame of reference for all subsequent pose estimates, i.e.,
Bt
B0
T̂. Each sensor has a coordinate frame S whose trans-

form (the extrinsic) to the body frame is provided in a .yaml
calibration file. We refer to our online note1 for more details
on the convention and interpretation of the provided data.

5. Survey-Grade Ground Truth Map
5.1. Survey Mapping Process

3D survey-grade mapping of the campuses was done by us-
ing various terrestrial laser scanners (TLS)2,3. In essence,

1https : / / mcdviral . github . io / UserManual #
coordinate-systems

2https://leica-geosystems.com/products/laser-
scanners/scanners/leica-rtc360

3https://faro.com/en/Products/Hardware/Focus-
Laser-Scanners

Figure 3. The coordinate frames of ground truth, time-varying
body frame, and the body-fixed sensor.

TLS acquires point cloud data from discrete, static locations
by means of ground-based, high-resolution 3D laser scan-
ners. These individual scans are then combined to produce
a complete 3D point cloud via co-visible landmarks (both
man-made and natural) and propriety global scan matching
software. point cloud data consists of 3D point coordinates
and may also include intensity or RGB channels.

Fig. 4 shows the hardware setup for the mapping mis-
sion over the most challenging campuses due to its elon-
gated shape. We divided the campus into three sections and



Figure 4. Target sphere, FARO laser scanner, and scan positions
distributed across the TUHH campus.

scanned them in succession from north to south. Scanning
each section took between 2 to 3 days, requiring at least two
field operators.

Upon completion of the scanning process, all individual
scans were registered in the manufacturer’s software. Reg-
istration of individual scans in each of the three sections was
performed solely on the basis of the artificial sphere targets
recorded in the scans. Cloud-to-cloud registration was then
used to align the three sections and create the final point
cloud of the entire campus area.

Target-based statistics showed a maximum distance error
of less than 10 mm for all sphere pairings that were used in
the registration optimization process. Building walls and
corners were spot-checked for overlap of scans. A total of
15 reference measurements were made with a total station
to verify the global accuracy of the point cloud. The results
showed a maximum distance error of less than 5 cm over the
entire length of the campus, which is below the resolution
of the point cloud.

5.2. Visualization

The survey maps are the key assets of MCD which will
be made available on our website. These maps enable
the SMCTR algorithm and facilitate the labeling process
of thousands of LiDAR scans. In this section, we present
an overview of the ground truth maps and their annotated
versions. Hence, we delve into visualizing specific details
within each asset, see Fig. 6, 7, 8.

The original scanned map for each campus amounts to
approximately 200 GB. This data size makes it impossible
to visualize the raw point clouds with its annotations. As a
result, for the purpose of visualization and comparison, we
uniformly downsampled the point clouds to a 5-centimeter

Figure 5. Ground truth scan position distributions across the NTU
and KTH campus. TUHH consists of 114 scans and TUHH con-
sists of 145 scans.

voxel size across all campuses and reduced each map to less
than 7 GB. Additionally, we applied blurring techniques
to conceal road information and human faces. Overall, all
three campuses are situated in developed countries and ex-
hibit a balance between vegetation and buildings. However,
Campus NTU and KTH stand out as they have less reflectiv-
ity, resulting in more comprehensive point cloud coverage.
On the other hand, Campus TUHH boasts modern architec-
ture with a significant number of reflective glass surfaces.
Consequently, it has the lowest point cloud coverage among
the three campuses because of the reflection noise.

6. Continuous-time Trajectory
To make working with continuous-time trajectory ground
truth easy, we have created a python wrapper for the basalt



Figure 6. MCD NTU ground truth map highlights.



Figure 7. MCD KTH ground truth map highlights.



Figure 8. MCD TUHH ground truth map highlights.



library [38] called CEVA (Continuous-time Evaluation),
which can be installed from github.com/mcdviral/
CEVA . In many aspects, CEVA exceeds the basalt library in
its utilities. Some of the improvements we have made are:

Easy use: CEVA is a Python module, therefore, it can be
easily imported into any Python program or Jupyter note-
books instead of having to be included and compiled like
the C++ library basalt. Several Jupyter notebooks are pro-
vided at scripts to showcase CEVA’s utilities.

Run-time selected spline order: the basalt library uses
a C++ template for the spline order to allow faster matrix
computations. Without compromising the speed, in CEVA,
a spline with any spline order from 4 to 9 can be created
at run time. This is particularly useful for parameter tun-
ing since when changing the spline order, the program does
not have to be recompiled. CEVA achieves this by precom-
piling the splines of different orders, and after the order is
declared, all methods will simply switch to the spline with
the corresponding order.

Load/save spline from/to a log: The user can easily
load or save a spline module from or to a csv log file con-
taining the spline’s intrinsic parameters (order, knot length,
min-time, max-time) and the control points.

Information query: CEVA allows users to easily query
information related to the spline, such as min-time, max-
time, pose, velocity, and acceleration ... by any set of time
instances. Moreover, query methods for other parameters,
such as the blending matrix, order, knot length, knot pose ...
are also provided for easier inspection of the spline object.

Deskew pointcloud: This is one of the new original fea-
tures of CEVA that basalt does not have. Once a spline has
been initialized with all intrinsic parameters and the con-
trol points, the user can pass a numpy array of the LiDAR
point clouds and their timestamps to a CEVA object and
obtain a deskewed point cloud where all LiDAR points are
transformed to the body frame at the beginning of the scan.
We provide a demo of this deskew process at the script
deskew demo.ipynb. Fig. 9 demonstrates the registration
of point clouds by the SLAM deskew process and CEVA’s
deskew process using the SMCTR trajectory.

Fitting spline: In many applications, one would like to
smooth out noisy trajectory measurements for better visu-
alization or use as a filter signal. For this purpose, we im-
plemented a continuous-time optimization scheme to fit a
spline to the noisy pose measurements. This also provides
a demo of our SMCTR algorithm, which employs LiDAR
and IMU factors, besides the pose factor in the spline fit-
ting method of CEVA. The demo script can be found at the
fitspline demo.ipynb script.

7. Details of Segmentation Benchmarks
In this section, we provide experimental details, benchmark
arrangement, and more experimental results of the MCD-

based 3D semantic segmentation benchmark.
Experimental Details: Most baseline methods are
re-implemented utilizing their default configs on Se-
manticKITTI [46] and their official open-source code. Two
exceptions are SPVCNN [41] and MinkowskiNet [39], for
which we leverage the re-implementation from the recent
2DPASS [47] since the original code is based on out-of-
date software settings. Since our LiDAR data processes a
different FOV compared to SemanticKITTI, we confine the
range of the input scene from [-51.2, 0, -4] to [51.2, 100,
20] along x, y, z axis, respectively. Class weights are re-
computed based on the class-wise point number in the train-
ing split for all baselines. During the inference stage, we
adopt the single-scan evaluation protocol without test-time
augmentations to make a fair comparison. All experiments
are conducted on a single or dual RTX 3090, depending on
the preference of baseline settings.
Benchmark Arrangement: As mentioned in the main pa-
per, all methods are trained on the NTU campus. As shown
in Tab. 4, we utilized the point cloud scan from ntu day 01,
ntu day 02, and ntu night 13 as the training split for all
benchmarks, which totally includes 10,606 scans as our
training samples. For NTU benchmark, ntu day 10 is cho-
sen as our testing split simply because it shares a larger
recording time gap compared to those in the training split.
For the KTH and TUHH benchmark, we select kth night 05
and tuhh day 02 as their testing split, respectively, since
they contain relatively suitable numbers of testing samples.
More Experimental Results: Due to the page limit, the
results of MCD KTH benchmark are included here as in
Tab. 3. Similar to MCD TUHH, a serious performance drop
(relatively more than 63%) can be observed compared to
MCD NTU for all baselines. This indicates the existence of
cross-campus discrepancy between MCD KTH and MCD
NTU and the fact that existing fully supervised baselines
are not able to generalize the knowledge in a cross-campus
manner. It is worth mentioning that this performance dis-
crepancy exists not only in long-tailed classes but also in
some dominant classes, such as “Road” and “Sidewalk”.

Additionally, an ablation study about how the existing
methods perform against points of various ranges is pro-
vided in Fig. 10. Compared to the performance w.r.t dis-
tance analysis in [46], recent methods achieve a better per-
formance in segmenting points within 50m. Yet as the
point range increases with much sparser points, a similar
performance degeneration as in [46] can be observed. Es-
pecially for state-of-the-art S-Former [45], its performance
significantly drops from about 50% to less than 20% once
the point range exceeds 50 meters. On the contrary, SD-
Seg3D [43] is the least distance-affected method, achieving
the best performance in segmentation over 65m. Our re-
sults show that segmenting long-range points still remains a
critical problem and it is worth further investigation in the
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MKNet [39] 0.0 10.2 75.2 0.6 0.1 0.0 9.4 2.3 0.0 30.5 0.2 0.3 0.1 44.8 20.5 10.3 0.1 15.8 0.5 0.8 0.7 32.4 66.6 20.4 14.3 (-69.0%)
SalsaNext [40] 0.0 0.4 51.2 0.0 0.2 0.0 3.9 0.2 0.0 9.6 0.6 0.0 0.0 8.9 5.9 7.5 0.0 5.0 0.0 0.0 2.5 13.0 42.7 9.0 6.7 (-80.0%)
SPVCNN [41] 0.0 2.6 67.0 0.4 0.1 0.0 7.2 0.4 0.0 32.6 0.4 0.3 0.0 19.4 19.3 8.7 0.0 8.5 4.4 0.7 3.2 25.9 68.1 12.7 11.8 (-75.5%)
Cylinder3D [42] 0.0 2.1 73.8 0.1 0.0 0.0 3.0 2.1 0.0 12.7 0.8 0.2 0.0 15.3 12.3 10.0 0.1 19.4 0.4 0.0 0.7 22.5 64.5 5.7 10.2 (-75.3%)
SDSeg3D [43] 0.1 9.3 77.8 1.4 0.0 0.0 6.1 3.0 0.0 35.6 0.5 0.6 0.0 50.0 19.3 11.4 0.0 20.1 4.5 0.0 1.4 42.0 68.5 27.5 16.4 (-64.9%)
WaffleIron [44] 0.1 4.6 73.6 0.4 0.0 0.0 6.7 0.7 0.0 31.9 0.3 0.0 0.0 26.0 24.1 10.7 0.0 11.8 3.4 0.5 0.1 46.7 62.6 20.7 13.5 (-73.1%)
S-Former [45] 0.1 20.8 73.9 3.5 0.0 0.0 8.1 4.8 0.0 33.6 0.2 0.1 0.0 55.6 28.3 9.5 0.0 30.6 11.6 0.5 4.7 39.1 68.2 31.4 17.7 (-70.0%)

Table 3. Segmentation performance of existing state-of-the-art methods on the MCD KTH sequences. The intersection over union (IoU) is
utilized as our evaluation matrix. The figure in round brackets is the relative mIoU gap on MCD KTH compared to MCD NTU (bottom),
respectively. Note that “Traffic-C” and “Structure-O” are short for “Traffic Cone” and “Structure-Other” classes, respectively.

Figure 9. Comparing the SLAM-deskewed point cloud (left) with SMCTR (middle). Notice the Uncertainty of the SLAM-deskewed point
cloud on the walls, rooftops and trees. On the other hand, the SMCTR point cloud has fewer registration noises.



Split Benchmark Sequence Seq. No. Total No.

Train -
ntu day 01 6,010

10,606ntu day 02 2,273
ntu night 13 2,323

Test
NTU ntu day 10 3,232 3,232
KTH kth night 05 6,638 6,638

TUHH tuhh day 02 4,986 4,986

Table 4. Split arrangement of semantic segmentation benchmarks.
Here “-” means the training split arrangement is utilized for all
benchmarks.

Figure 10. Segmentation performance vs. point range.

future study.

8. The Challenges
LIO Challenge: Fig. 13 report the estimation error over
time of the LIO methods upon the three main sequences.

As explained in the SLAM experiment, it is evident that
no SLAM method can perform consistently well across all
campuses. Noticeably, the LIO-SAM method performs well
in the KTH and TUHH environments but has significant
drift in the ATV sequences in NTU campus, especially in
the z-direction. One reason that we have pointed out is that
it is not adept for high-speed scenarios. In addition, since
NTU campus has a gradual slope running through a road
with dense vegetation, which lacks large horizontal planar
features that can constrain its drift on a global scale, espe-
cially when it uses a local submap for localization.
Visual Challenge: Fig. 11 illustrates the visual challenges
in the MCD. In sequences from campus NTU, solar inter-
ference predominantly affects RGB cameras, causing a no-
ticeable purple hue offset. This offset is dynamic, where it
appears when the robot is in direct sunlight and disappears
when it is in the shade. Additionally, night sequences in
campus NTU exhibit significant lighting variations, transi-

tioning from bright regions to darker areas. In general, this
scenario closely resembles typical urban areas, making it
highly relevant for testing various autonomous driving al-
gorithms.

Campus KTH and TUHH encounter similar issues, with
excessive daytime brightness leading to camera overexpo-
sure but with lesser hue offset. Furthermore, due to the
recent conflict in Ukraine, cities have implemented energy
conservation measures, resulting in darker urban environ-
ments. This has resulted in consistent low-light conditions,
offering a valuable opportunity to evaluate the effectiveness
of various night image enhancement algorithms. Moreover,
in both of these campuses, the roads are often shared by
both vehicles and pedestrians, and many areas lack lane-
markings that indicate permissible paths. This presents a
significant challenge for both self-driving cars and delivery
robots, as they must navigate these complex and unstruc-
tured environments.
Cross Modality Noise Challenge: Fig. 12 illustrates a real-
world problem where robot cars must contend with corner
cases of solar interference when exposed to direct sunlight,
along with various reflection issues that can potentially trig-
ger system malfunctions across multiple modalities. While
these challenges are common in robotics and autonomous
driving applications, there are very few existing datasets
that effectively bring them to light and provide annotated
data points that enable robots to learn from samples. In
our sequence, we not only highlight these challenges but
also provide annotations with the aim of offering labels that
help machines distinguish between noise and genuine ob-
servations.

9. Research Potential

The MCD dataset comprises rich, valuable information en-
compassing prior maps, ground truth poses, and semantic
annotations. Our dataset can be used in numerous appli-
cations, including but not limited to: multi-modality sen-
sor fusion, SLAM, Single modality localization, Cross-
Modality localization (i.e., Camera localization based on
the prior 3D map), lane detection, neural radiance fields re-
constructions, traversability analysis, domain adaption, per-
ception fault analysis, image classification, object detec-
tion, object localization, semantic segmentation, image cap-
tioning, image generation, super-resolution, scene recog-
nition, visual search, depth estimation, 3D object recogni-
tion, stereo vision, image denoising, image inpainting, im-
age blurring, image restoration, and image style transfer.

10. Licence and Legal Compliance

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License and is intended for non-commercial academic re-



Figure 11. Challenging image sequences with various lighting conditions and inferences.

search use. MCD is collected to push the frontier of robotics
research. Throughout the project, we have adhered to the
Personal Data Protection Act (PDPA) and General Data
Protection Regulation (GDPR). To the best of our knowl-
edge, facial blurring has been applied to all sequences, and
Data Protection Officers have been appointed to oversee
PDPA and GDPR compliance. The data is securely stored
on Google Drive to prevent unauthorized access or disclo-
sure. In the event of potential issues or breaches related to
anonymization, security, or data access problems, we en-
courage concerned parties to report or request data correc-
tions using the provided link at mcdviral.github.
io/#licence . Remixes, transformations, or derivative
works of MCD must be distributed under the original li-

cense.
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